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Chapter 1

Introduction

The traditional lexical resources, such as Wordnets1, taxonomies, thesauri or

dictionaries contain precise manually-encoded information about lexical items (such

as words and phrases) and relations between them (such as synonyms and

hypernyms) yet coverage i.e. recall and actuality of these resources is often

inherently limited. This is due to the expensive, long and usually purely manual

process of resource creation and keeping it up-to-date involving labor of

lexicographers, linguists and domain experts. Besides, some domain-specific terms

may be simply out of scope even for the largest lexicographical collaboratively

created linguistic resources, such as Wiktionary.2

On the other hand, it is possible to apply data-driven approaches, such as

distributional semantic models and information extraction, to mine for word senses

and relations between them from large textual corpora, such as Wikipedia3 or

CommonCrawl4. This alternative automatic way of building lexical-semantic

resources, in contrast to the manual approach, usually yield high recall due to the

huge lexical coverage of unlabeled text corpora, but its results may be noisy i.e. of

low precision. One of the overreaching goals of this work was to bridge the gap

between these two views on lexical semantics getting the best of both worlds while

1https://wordnet.princeton.edu
2https://www.wiktionary.org
3https://www.wikipedia.org
4https://commoncrawl.org
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Figure 1-1: Overview of various concepts and tasks in computational lexical semantics
modelled and used in this dissertation and their interrelations.

combining high precision of manual resources with the high recall of automatic

techniques.

Figure 1-1 illustrates main linguistic concepts and interactions between them

which are modelled and processed using computational methods discussed in this

dissertation. Namely, a lexical resource is commonly represented as a graph

G = (V,E) with the set of nodes V representing concepts and the set of edges E

representing semantic relations between them, such as synonymy, such as

ei = (car, vehicle) or hyperonymy, such as ej = (Toyota, car). Co-hyponyms,

such as (apple, pear) are semantic siblings – terms with a common hypernym i.e.

“apple → fruit” and “pear → fruit”.

Individual nodes may be represented as a synset i.e. a clique of synonyms, such

as {car, vehicle, automobile} or {behemoth, hippopotamus}. Each node usually

represents a word in a given word sense, e.g. “jaguar (animal)” as opposed to

“jaguar (car)” and may feature a human readable definition of this sense. At the

same time, mentions of the word “jaguar” in a text corpus are not provided with

explicit labels of word senses, such as “animal” or “car” unless someone marked

them in a lexical resource as examples of word use in context. These, together with
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graphical illustrations of word senses help to make definitions human-interpretable.

Figure 1-2 presents an overview of key methods for computational lexical

semantics presented in this dissertation and their interrelations. To start a summary

of these contributions, let us turn to another gap between two mentioned above

methodological “realms” i.e., manually created vs data-driven lexical representations

of words, namely the lack of explicit sense annotations in raw texts. At the very

bottom of Figure 1-2 a textual context of the word “jaguar” is presented. A string

“jaguar” may refer to several word senses, such as “jaguar (animal)” and

“jaguar (car)” as described in a manually created taxonomy. However, there is

obviously no identifier in text referring to one of these senses in the lexical resource.

A word sense disambiguation (WSD) algorithm automatically identifies the

most suitable meaning of a word given the context. Another related technology is

lexical substitution. Instead of explicit linking to word senses it generates

semantically suitable substitutes (usually, synonyms, co-hyponyms, or hypernyms)

in the correct sense. For instance, here for the word “jaguar” substitutes “puma”,

“cheetah”, and “cougar” are generated and not “Mercedes”, “BMW”, or “Audi”.

The interest of performing WSD is to link text to rich, precise and interpretable

word sense representations from the manually created resource, which may feature

elements such as definitions, images, hypernyms, and related words. At the same

time, newly inserted word senses discovered automatically as described above, do

not have such representations. That is why one of the contributions was to create

a technology for automatic building such rich human-interpretable multi-modal

word sense representations.

Finally, the use of word sense representations in machine learning models,

especially in (deep) neural networks is complicated if these are represented in

symbolic form of graphs (which correspond to sparse vector representation also

known as “one-hot encoding”). Besides, for similarity computations between word

senses low-dimensional dense vector format (also known as “embedding”) is

preferable over sparse vector format or graph representations. That is why,

procedures of graph vectorization were developed and tested on large scale

7
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Figure 1-2: An “eco-system” of the developed approaches: an overview of the
methods of computational lexical semantics presented in this dissertation and their
interrelations.

lexical resources, such as Wordnet and DBpedia5. Taking as input a lexical resource

network these output node embeddings of this graph. For similar purposes,

procedures for obtaining word sense embeddings from the graph-based sense

representations induced from text were proposed. These representations are further

used to perform WSD based on similarity computations between context words and

these newly learned vector representations of word senses.

To summarize, Figure 1-2 presents an overview of various methods for

computational lexical semantics proposed in this dissertation and illustrate how

they interact with one another. Namely, word senses induced from text corpus

though graph clustering is the process known as word sense induction. Word

senses mined from text though this procedure may already be present in the lexical

resource, such as “jaguar (animal)”. In this case, a linking of word senses of

these senses is required. Alternatively a word sense may cover a new meanings not

present in the resource, but represented in text. In the latter case, this newly

discovered word sense is added into the resource increasing its recall. Similar is done

with semantic relations. The figure illustrates how hypernyms (also known as

5https://dbpedia.org
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“Is-A” or hierarchical relations) are extracted from text corpus and used to perform

enrichment of an existing taxonomy.

Therefore, contributions presented in this dissertation cover a wide range of task

related to lexical computational semantics: they form a solid methodological

framework for learning, population, linking, disambiguation and vectorization of

word senses and relations between them.

Methodologically, many developed methods are graph-based, more specifically

graph clustering algorithms, including newly proposed, are used to process linguistic

networks of various kinds. The use of graph representation is fairly natural as each

lexical semantic resource can be represented as graph with nodes being word senses or

terms and edges being semantic relations between them. As the modern NLP methods

heavily rely on neural networks, dealing with such linguistic graphs required their

vectorisation. Towards this end, methods for node embedding of linguistic graphs,

such as WordNets and Knowledge Graphs (KG) were developed to solve various tasks,

such as completion of linguistic resources and word sense disambiguation.

The proposed methods for learning and population from text are applicable to all

common lexical linguistic resources, such as lexical semantic databases, e.g. Wordnet

or Babelnet6, thesauri, taxonomies, as they all can be represented in the form of

graph with nodes corresponding to word senses. Methods for induction of word

senses from text mining new nodes of such graphs. Algorithms for linking of newly

mined word senses with existing resources find correspondances between nodes of

manually constructed and automatically constructed graphs. Methods for induction

of semantic taxonomies, which form a backbone of pretty much every type of lexical

semantic resource, are learning special kinds of directed graphs - trees. Crucially,

most practical application of a sophisticated lexical resource, such as WordNet, involve

mapping senses representation listed in this resource to tokens occurring in a raw text.

Towards this end, developed methods for WSD search for optimal correspondences

in terms of semantic coherence of nodes of lexical resource and tokens in text.

Therefore, the set of proposed methods deal with both graph and vector-based

6https://babelnet.org
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representation of word senses as they are are highly complementary: for various

use-cases one or another may be used. The contents of the thesis are arranged in 9

“content chapters”, covering a variety of topics. At the same time each chapter is

related to the use of graph and/or vector based representations to a lexical-semantic

processing task. Among all methodological techniques graph clustering shall be

highlighted as the central one, applied in various contexts, such as induction of word

senses, semantic frames or improving quality of hypernymy relations.

Object and goals of the dissertation.

The purpose of the dissertation is the development of methods for computational

lexical semantics which would bridge the gap between (i) the precise

well-interpretable manually created lexical resources with low lexical coverage and

(ii) noisy non-interpretable automatically induced from text distributional lexical

representations with high lexical coverage. This includes (i) development of new

algorithms for clustering of large linguistic networks constructed from both

manually created lexical resources and graphs induced from text, (ii) development of

methods for induction of lexical semantic structures of various kinds from text, most

notably word senses and hypernymy relations, (iii) development of techniques for

making the induced structures interpretable in the way they are in manually

constructed resources, (iv) development of methods for effective disambiguation in

context with respect to the induced sense representations, (v) development of

effective vectorization of lexical semantic graphs for the use in various applications,

(vi) development methods for automatic construction of lexical-semantic hierarchies.

The obtained results:

1. Developing an algorithm for fuzzy graph clustering effective and efficient for

processing of large lexical-semantic networks (Chapter 2).

2. Based on the developed fuzzy graph clustering algorithm, we propose a methods

for induction of three lexical semantic structures: synsets, semantic frames, and

semantic classes (Chapter 2).
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3. Proposing a method for learning sense embeddings from word embeddings using

graph clustering, and a word sense disambiguation method using the induced

sense representations (Chapter 3).

4. Developing a method for inducing from text word sense representations using

graph-based distributional methods and techniques for making these

representations interpretable by automatic retrieval of hypernyms, images,

and definitions (Chapter 4).

5. Proposing a framework for enriching lexical resources with distributional

information, featuring algorithm for linking distributionally induced sense

representations to manually created lexical resources, and algorithm for

disambiguation of related words and hypernyms (Chapter 5).

6. Developing a model for generation of hypernyms of words based on projection

learning with regularization of relation asymmetry (Chapter 6).

7. Proposing a method for post-processing of hypernymy relations using

distributionally induced semantic classes: wrong hypernyms are removed while

the missing ones are added (Chapter 7).

8. Proposing an algorithm for construction of taxonomic tree (composed of binary

hypernymy relations between terms) using Euclidean and hyperbolic (Poincaré)

vector representations (Chapter 8).

9. Proposing a model for learning node embeddings of linguistic networks using

supervision from graph-based similarity metrics and show its applicability to

word sense disambiguation task, inter alia (Chapter 9).

10. Proposing methods for neural lexical substitution which integrates information

about the target word with the information about the context (Chapter 10).

11. Investigating distribution of lexical-semantic relations provided the neural lex-

ical substitution models (Chapter 10).
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Author’s contribution includes the formal problem formulations and

experimental design for all the mentioned above results, the design of the methods

and algorithms mentioned, analysis and generalization of the results. The more

specific author’s contribution (and list of key collaborators) related to each paper

are provided in the list of publications below.

The novelty of the proposed research lies in the development of new algorithms

for computational lexical semantics. Most of the proposed methods deal with either

distributional semantics methods, graph clustering algorithms or both of them. A

novel graph clustering approach lies at the core of several newly proposed methods

for lexical semantics. For instance, those for automatic induction of lexical semantic

structures, such as synsets, semantic frames and semantic classes. Several

contributions are related to automatic processing of hypernymy relationships

between words. In particular, in the dissertation the author proposes:

• Algorithm for fuzzy graph clustering (Chapter 2);

• Methods for induction of synsets, semantic classes and frames (Chapter 2);

• Methods for learning word sense embeddings (Chapter 3);

• Method for inducing interpretable word sense representations from text

(Chapter 4);

• Method for linking distributional word sense representations with lexical

resources (Chapter 5);

• Model for generation of hypernyms (Chapter 6);

• Method for post-processing of noisy hypernymy relations (Chapter 7);

• Algorithm for construction of lexical semantic trees i.e. taxonomies (Chapter 8);

• Model for node embeddings of linguistic graphs (Chapter 9);

• Methods for neural lexical substitution (Chapter 10);
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• Study of distribution of lexical semantic relations provided by neural lexical

substitution models (Chapter 10).

Now let us turn to the summary of published research this dissertation is based

on. The scope of dissertation is covered in 42 publications [1–42], among those:

• 5 papers are published in CORE A* conferences [3, 5, 9, 10, 13];

• 6 papers are published in CORE A conferences [1, 2, 4, 7, 16];

• 5 articles are published in in Q1 journals [6, 8, 11,12,15];

• 1 paper is published in CORE A* conference student track [28];

• 1 paper is published in CORE A conference demo track [18];

• 5 papers is published at CORE B conference [19,20,26,27,29];

• 11 papers indexed by Scopus published in proceedings of the main volumes of

conferences [22–25,30–34,40,41];

• 8 papers indexed by Scopus published in workshops co-located with top

conferences (CORE A*/A) [17,21,35–39,42].

According to regulations of the Dissertation Council in Computer Sciences of

Higher School of Economics and for brevity among the 42 papers topically fitting

the dissertation only 20 key papers are listed below including all 16 first-tier, i.e.

A*/A/Q1, and selected 4 second-tier. The remaining 22 second-tier publications are

cited in the bibliography and are openly available online. The defence is performed

based on 14 publications of these 20 listed below works. Namely, based

on the first 10 from the list of first-tier publications [1–10] and the 4 second-tier

publications [17–20]. To avoid confusions, an note “used for defence” is included

below where appropriate.
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First-tier publications:

1. A. Panchenko, E. Ruppert, S. Faralli, S. P. Ponzetto, and C. Biemann,

“Unsupervised does not mean uninterpretable: The case for word sense

induction and disambiguation,” in Proceedings of the 15th Conference of the

European Chapter of the Association for Computational Linguistics: Volume 1, Long

Papers, (Valencia, Spain), pp. 86–98, Association for Computational Linguistics,

Apr. 2017

https://aclanthology.org/E17-1009

[CORE A] used for defence; main co-author; the author of this thesis has proposed

an interpretable unsupervised knowledge-free word sense disambiguation (WSD)

method consisting of (1) a technique to disambiguation that relies on induced

inventories as a pivot for learning sense feature representations, (2) a technique for

making induced sense representations interpretable by labelling them with hypernyms

and images.

2. N. Arefyev, B. Sheludko, A. Podolskiy, and A. Panchenko, “Always Keep your

Target in Mind: Studying Semantics and Improving Performance of

Neural Lexical Substitution,” in Proceedings of the 28th International

Conference on Computational Linguistics, (Barcelona, Spain (Online)),

pp. 1242–1255, International Committee on Computational Linguistics, Dec. 2020

https://aclanthology.org/2020.coling-main.107

[CORE A] used for defence; main co-author; the author designed (in an

inseparable cooperation with N. Arefyev) methods of target word injection for lexical

substitution quality improvement; performed an analysis of types of semantic

relations (synonyms, hypernyms, co-hyponyms, etc.) produced by neural substitution

models.

3. A. Kutuzov, M. Dorgham, O. Oliynyk, C. Biemann, and A. Panchenko, “Making

Fast Graph-based Algorithms with Graph Metric Embeddings,” in

Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, (Florence, Italy), pp. 3349–3355, Association for Computational

Linguistics, July 2019

https://aclanthology.org/P19-1325
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[CORE A*] used for defence; main co-author; the author designed a method that

learns dense vector embeddings of nodes based on a pre-defined graph-based

similarity measure, e.g. the shortest path distance.

4. D. Ustalov, N. Arefyev, C. Biemann, and A. Panchenko, “Negative Sampling Im-

proves Hypernymy Extraction Based on Projection Learning,” in Proceed-
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ation for Computational Linguistics, Apr. 2017

https://aclanthology.org/E17-2087

[CORE A] used for defence; main co-author; the author (in an inseparable cooper-

ation with D. Ustalov) designed an approach for hypernymy extraction based on pro-

jection learning, which makes use of both positive and negative training instances en-

forcing the asymmetry of the projection.

5. R. Aly, S. Acharya, A. Ossa, A. Köhn, C. Biemann, and A. Panchenko, “Every

Child Should Have Parents: A Taxonomy Refinement Algorithm Based
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[Q1] used for defence; main co-author; the author proposed (in an inseparable

cooperation with D. Ustalov) a meta-algorithm for fuzzy graph clustering using hard

clustering methods; methods for induction of synsets, semantic frames, and

semantic classes based on based on the proposed algorithm.
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11. Ö. Sevgili, A. Shelmanov, M. Y. Arkhipov, A. Panchenko, and C. Biemann, “Neural

entity linking: A survey of models based on deep learning,” Semantic Web,

vol. 13, no. 3, pp. 527–570, 2022

https://doi.org/10.3233/SW-222986

[Q1] main co-author; the author has proposed the overall idea and structure of the

survey; created formal definitions of tasks; guided the writing.

12. S. Anwar, A. Shelmanov, N. Arefyev, A. Panchenko, and C. Biemann, “Text

augmentation for semantic frame induction and parsing,” Language

Resources and Evaluation, vol. 23, no. 3, pp. 527–556, 2023

https://link.springer.com/article/10.1007/s10579-023-09679-8

[Q1] main co-author; the author designed a one-shot method for inducing

frame-semantic structures using lexical substitution on frame-annotated sentences;

designed experimental setting for semantic frame parsing and induction.

13. A. Jana, D. Puzyrev, A. Panchenko, P. Goyal, C. Biemann, and A. Mukherjee, “On

the Compositionality Prediction of Noun Phrases using Poincaré
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14. I. Nikishina, V. Logacheva, A. Panchenko, and N. Loukachevitch, “Studying
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the 28th International Conference on Computational Linguistics, (Barcelona, Spain

(Online)), pp. 3095–3106, International Committee on Computational Linguistics,
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https://aclanthology.org/2020.coling-main.276

[CORE A] main co-author; the author designed several methods for taxonomy

enrichment.

15. I. Nikishina, M. Tikhomirov, V. Logacheva, Y. Nazarov, A. Panchenko, and N. V.

Loukachevitch, “Taxonomy enrichment with text and graph vector

representations,” Semantic Web, vol. 13, no. 3, pp. 441–475, 2022

https://doi.org/10.3233/SW-212955

[Q1] main co-author; the author designed (in inseparable cooperation with I.

Nikishina) methods for taxonomy enrichment using text and graph vectors.

16. S. Faralli, A. Panchenko, C. Biemann, and S. P. Ponzetto, “The

ContrastMedium Algorithm: Taxonomy Induction From Noisy

Knowledge Graphs With Just A Few Links,” in Proceedings of the 15th

Conference of the European Chapter of the Association for Computational

Linguistics: Volume 1, Long Papers, (Valencia, Spain), pp. 590–600, Association for

Computational Linguistics, Apr. 2017

https://aclanthology.org/E17-1056

[CORE A] main co-author; the author designed (in inseparable cooperation with S.

Faralli) end-to-end pipeline for taxonomy induction from scratch using distributional

semantic representations.
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Embeddings,” in Proceedings of the 1st Workshop on Representation Learning for
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C. Biemann, “Unsupervised, Knowledge-Free, and Interpretable Word
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E. Artemova, C. Biemann, S. P. Ponzetto, and A. Panchenko, “Word Sense
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https://aclanthology.org/2020.lrec-1.728
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new algorithm of unsupervised word sense induction, which creates sense inventories
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In this section, we list conferences where the 42 papers relevant to the scope of this

dissertation were presented, not only those 14 papers the defence is based on.7

1. ACL-2019 [CORE A*] [3,5,13,28,36]: The 57th Annual Meeting of the Association

for Computational Linguistics, (Florence, Italy), Association for Computational Lin-
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8. EACL-2017 [CORE A] [1,4,16,39]: The 15th Conference of the European Chapter

of the Association for Computational Linguistics (Valencia, Spain), Association for

Computational Linguistics, April 2017. [1]

7To obtain the exact rank of a publication please refer to the list above as some of the papers
were presented at the associated workshops co-located with the main conference.
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Chapter 2

Graph Clustering for Sense and

Frame Induction

Materials of this chapter are based on papers [6, 9, 10] from the list of 14 publications the

thesis is based on.

2.1 Introduction

In this chapter, we deal with the task of graph clustering applying to extraction of various

linguistic structures, such as synsets.

Let G = (V,E) be an undirected simple graph, where V is a set of nodes and E ⊆ V 2

is a set of undirected edges. We denote a subset of nodes Ci ⊆ V as a cluster. A graph

clustering is a function Cluster : (V,E) → C such that V =
⋃

Ci∈C

Ci. Two classes of

graph clustering exist: hard clustering algorithms produce non-overlapping clusters, i.e.,

Ci ∩ Cj = ∅ ⇐⇒ i ̸= j, ∀Ci, Cj ∈ C while fuzzy clustering permit cluster overlapping,

i.e., a node can be a member of several clusters in C.

Below, a meta-algorithm for fuzzy graph clustering is presented. It creates an interme-

diate representation of the input graph that reflects the “ambiguity” of its nodes. Then, it

uses hard clustering to discover clusters in this “disambiguated” intermediate graph.
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Figure 2-1: The outline of the algorithm showing the local step of node sense induction
and context disambiguation, and the global step of sense graph constructing and
clustering.

2.2 Method

In this section, a meta-algorithm for fuzzy graph clustering is presented. Given a graph

connecting potentially ambiguous objects, e.g., words, it induces a set of unambiguous

overlapping clusters (communities) by disambiguating and grouping the ambiguous objects.

This is a meta-algorithm that uses existing hard clustering algorithms for graphs to obtain

a fuzzy clustering, a.k.a. soft clustering.

Outline of Fuzzy Graph Clustering Method

Algorithm constructs an intermediate representation of the input graph called a sense

graph. This is achieved by node sense induction based on hard clustering of the input graph

node neighborhoods. The sense graph has the edges established between the different senses

of the input graph nodes. The global clusters of the input graph are obtained by applying

a hard clustering algorithm to the sense graph.

An outline of our algorithm is depicted in Figure 2-1: it takes an undirected graph

G = (V,E) as the input and outputs a set of clusters C. The algorithm has two steps:

local and global. The local step, disambiguates the potentially ambiguous nodes in G.

The global step, uses these disambiguated nodes to construct an intermediate sense graph

G = (V, E) and produce the overlapping clustering C. Watset is parameterized by two graph

partitioning algorithms ClusterLocal and ClusterGlobal, and a context similarity measure sim.

The complete pseudocode of Watset is presented in Algorithm 1. For the sake of illustration,

while describing the approach, we will provide examples with words and their synonyms.

However, Watset is not bound only to the lexical units and relationships, so our examples are

given without loss of generality. Note also that Watset can be applied for both unweighted
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Algorithm 1 Watset, a Local-Global Meta-Algorithm for Fuzzy Graph Clustering.

Input: graph G = (V,E),
hard clustering algorithms ClusterLocal and ClusterGlobal,
context similarity measure sim : (ctx(a), ctx(b))→ R, ∀ ctx(a), ctx(b) ⊆ V .

Output: clusters C.
1: for all u ∈ V do ▷ Local Step: Sense Induction
2: senses(u)← ∅
3: Vu ← {v ∈ V : {u, v} ∈ E} ▷ Note that u /∈ Vu

4: Eu ← {{v, w} ∈ E : v, w ∈ Vu}
5: Gu ← (Vu, Eu)
6: Cu ← ClusterLocal(Gu) ▷ Cluster the open neighborhood of u
7: for all Ci

u ∈ Cu do
8: ctx(ui)← Ci

u

9: senses(u)← senses(u) ∪ {ui}
10: V ←

⋃
u∈V

senses(u) ▷ Global Step: Sense Graph Nodes

11: for all û ∈ V do ▷ Local Step: Context Disambiguation
12: ĉtx(û)← ∅
13: for all v ∈ ctx(û) do
14: v̂ ← argmaxv′∈senses(v) sim(ctx(û) ∪ {u}, ctx(v′)) ▷ û is a sense of u ∈ V

15: ĉtx(û)← ĉtx(û) ∪ {v̂}
16: E ← {{û, v̂} ∈ V2 : v̂ ∈ ĉtx(û)} ▷ Global Step: Sense Graph Edges
17: G ← (V, E) ▷ Global Step: Sense Graph Construction
18: C ← ClusterGlobal(G) ▷ Global Step: Sense Graph Clustering
19: C ← {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C} ▷ Remove the sense labels
20: return C

and weighted graphs as soon as the underlying hard clustering algorithms ClusterLocal and

ClusterGlobal take edge weights into account.

Local Step: Node Sense Induction and Disambiguation

The local step of Watset discovers the node senses in the input graph and uses this

information to discover which particular senses of the nodes were connected via the edges

of the input graph G.

Node Sense Induction. We induce node senses using the word neighborhood

clustering approach by [43]. In particular, we assume that the removal of the nodes

participating in many triangles separates a graph into several connected components.

Each component corresponds to the sense of the target node, so this procedure is executed

for every node independently. Figure 2-2 illustrates this approach for sense induction.

Given a node u ∈ V , we extract its open neighborhood Gu = (Vu, Eu) from the input
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streambank?

streamside?

riverbank?

building?

bank building?

bank?

Figure 2-2: Clustering the neighborhood of the node “bank” of the input graph
results in two clusters treated as the non-disambiguated sense contexts: bank1 =
{streambank, riverbank, . . . } and {bank2 = bank building, building, . . . }.

Table 2.1: Example of induced senses for the node “bank” and the corresponding
clusters (contexts).

Sense Context

bank1 {streambank, riverbank, . . . }
bank2 {bank building, building, . . . }
bank3 {bank company, . . . }
bank4 {coin bank, penny bank, . . . }

graph G, such that the target node u is not included into Vu (lines 3–5):

Vu = {v ∈ V : {u, v} ∈ E}, (2.1)

Eu = {{v, w} ∈ E : v, w ∈ Vu}. (2.2)

Then, we run a hard graph clustering algorithm on Gu that assigns one node to one

and only one cluster, yielding a clustering Cu (line 6). We treat each obtained cluster

Ci
u ∈ Cu ⊂ Vu as representing a context for a different sense of the node u ∈ V (lines 7–9).

We denote, e.g., bank1, bank2 and other labels as the node senses referred to as senses(bank).

In the example in Table 2.1, |senses(bank)| = 4. Given a sense ui ∈ senses(u), we denote

ctx(ui) = Ci
u as a context of this sense of the node u ∈ V . Execution of this procedure for

all the words in V results in the set of senses for the global step (line 10):

V =
⋃
u∈V

senses(u). (2.3)

Disambiguation of Neighbors. Although at the previous step we have induced node

senses and mapped them to the corresponding contexts (Table 2.1), the elements of these
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streambank?

streamside?

riverbank?

building?

bank building?

bank1 bank2

Figure 2-3: Contexts for two different senses of the node “bank”: only its senses
bank 1 and bank 2 are currently known, while the other nodes in contexts need to be
disambiguated.

Table 2.2: An example of context vectors for the node senses demonstrated in
Figures 2-3 and 2-4. Since the graph is unweighted, one-hot encoding has been used.
For matching purposes, the word “bank” is temporarily added into ctx(bank2).

Sense bank bank building building construction edifice

bank2 1 1 1 0 0

building1 1 1 0 1 0

building2 0 0 0 0 1

contexts do not contain sense information. For example, the context of bank2 in Figure 2-3

has two elements {bank building?, building?}, the sense labels of which are currently not

known. We recover the sense labels of nodes in a context using the sense disambiguated as

follows.

We represent each context as a vector in a vector space model [44] constructed for

all the contexts. Since the graph G is simple and the context of any sense û ∈ V does

not include the corresponding node u ∈ V (Table 2.1), we temporarily put it into the

context during disambiguation. This prevents the situation of non-matching when the

context of a candidate sense v′ ∈ senses(v) has only one element and that element is u, i.e.,

ctx(v′) = {u}. We intentionally perform this insertion temporarily only during matching to

prevent self-referencing. When a context ctx(û) ⊂ V is transformed into a vector, we assign

to each element v ∈ ctx(û) of this vector a weight equal to the weight of the edge {u, v} ∈ E

of the input graph G. If G in unweighted, we assign 1 if and only if {u, v} ∈ E, otherwise 0

is assigned. Table 2.2 shows an example of the context vectors used for disambiguating the

word building in the context of the sense bank2 in Figure 2-3. In this example the vectors

essentially represent one-hot encoding as the example input graph is unweighted.

Then, given a sense û ∈ V of a node u ∈ V and the context of this sense ctx(û) ⊂ V , we
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Figure 2-4: Matching the meaning of the ambiguous node “building” in the context
of the sense bank 2. For matching purposes, the word “bank” is temporarily added
into ctx(bank2).

disambiguate each node v ∈ ctx(û). For that, we find the sense v̂ ∈ senses(v) the context

ctx(v̂) ⊂ V of which maximizes the similarity to the target context ctx(û). We compute the

similarity using a context similarity measure sim : (ctx(a), ctx(b)) → R, ∀ ctx(a), ctx(b) ⊆

V .Typical choices for the similarity measure are dot product, cosine similarity, Jaccard

index, etc. Hence, we disambiguate each context element v ∈ ctx(û):

v̂ = argmaxv′∈senses(v) sim(ctx(û) ∪ {u}, ctx(v′)). (2.4)

An example in Figure 2-4 illustrates the node sense disambiguation process. The

context of the sense bank2 is ctx(bank2) = {building, bank building} and the

disambiguation target is building. Having chosen cosine similarity as the context similarity

measure, we compute the similarity between ctx(bank2 ∪ {bank}) and the context of every

sense of building in Table 2.2: cos(ctx(bank2) ∪ {bank}, ctx(building1)) =
2

3
and

cos(ctx(bank2) ∪ {bank}, ctx(building2)) = 0. Therefore, for the word building in the

context of bank2, its first sense, building1, should be used because its similarity value is

higher.

Finally, we construct a disambiguated context ĉtx(û) ⊂ V which is a sense-aware

representation of ctx(û). This disambiguated context indicates which node senses were

connected to û ∈ V in the input graph G. For that, in lines 13–15, we apply the

disambiguation procedure defined in Equation (2.4) for every node v ∈ ctx(û):

ĉtx(û) = {v̂ ∈ V : v ∈ ctx(û)}. (2.5)

As the result of the local step, for each node u ∈ V in the input graph, we induce
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the senses(u) ⊂ V of nodes and provide each sense û ∈ V with a disambiguated context

ĉtx(û) ⊆ V.

Global Step: Sense Graph Construction and Clustering

The global step of Watset constructs an intermediate sense graph expressing the

connections between the node senses discovered at the local step. We assume that the

nodes V of the sense graph are non-ambiguous, so running a hard clustering algorithm on

this graph outputs clusters C covering the set of nodes V of the input graph G.

Sense Graph Construction. Using the set of node senses defined in Equation (2.3),

we construct the sense graph G = (V, E) by establishing undirected edges between the senses

connected through the disambiguated contexts (lines 16–17):

E = {{û, v̂} ∈ V2 : v̂ ∈ ĉtx(û)}. (2.6)

Note that this edge construction approach disambiguates the edges E such that if a

pair of nodes was connected in the input graph G, then the corresponding sense nodes

will be connected in the sense graph G. As the result, the constructed sense graph G is a

sense-aware representation of the input graph G. In case G is weighted, we assign each edge

{û, v̂} ∈ E the same weight as the edge {u, v} ∈ E has in the input graph.

Sense Graph Clustering. Running a hard clustering algorithm on G produces the

set of sense-aware clusters C, each sense-aware cluster Ci ∈ C is a subset of V (line 18). In

order to obtain the set of clusters C that covers the set of nodes V of the input graph G,

we simply remove the sense labels from the elements of clusters C (line 19):

C =
{
{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C

}
. (2.7)

Figure 2-5 illustrates the sense graph and its clustering on the example of the node

“bank”. The construction of a sense graph requires disambiguation of the input graph

nodes. Note that traditional approaches to graph-based sense induction, such as the ones

proposed by [45–47], do not perform this step, but perform only local clustering of the graph

since they do not aim at a global representation of clusters.

As the result of the global step, a set of clusters C of the input graph G is obtained

using an intermediate sense-aware graph G. The presented local-global graph clustering

approach, Watset, makes it possible to naturally achieve a soft clustering of a graph using
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streambank3

streamside1

riverbank2

building2

bank building1

bank1 bank2

Figure 2-5: Clustering of the sense graph G yields two clusters,
{bank1, streambank3, riverbank2, . . . } and {bank2, bank building1, building2, . . . }; if
one removes the sense labels, the clusters will overlap resulting in a soft clustering
of the input graph G.

Table 2.3: Various types of input linguistic graphs clustered by the Watset algorithm
and the corresponding induced output symbolic linguistic structures.

Input Nodes Input Edges Output Linguistic Structure

Polysemous words Synonymy relationships Synsets composed of
disambiguated words

Subject-Verb-Object
(SVO) triples

Most distributionally
similar SVO triples

Lexical semantic frames

Polysemous words Most distributionally
similar words

Semantic classes composed of
disambiguated words

hard clustering algorithms only.

Its worth noting that the original paper [6] includes also description of a simplified

version of Watset which allows to construct the sense graph G in linear time O(|E|) by

querying the node sense index to disambiguate the input edges E in a deterministic way.

Other steps are identical to the original Watset algorithm presented here.

2.3 Results

Experiments show that, the algorithm shows competitive results in three applications:

unsupervised synset induction from a synonymy graph, unsupervised semantic frame

induction from dependency triples, and unsupervised semantic class induction from a

distributional thesaurus. The algorithm is generic and can be also applied to other

networks of linguistic data (see Table 2.3). Sample synsets induced by the Watset[MCL,

MCL] method are presented in Table 2.4.

Further details, including theoretical and experimental algorithmic complexity analysis
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Size Synset

2 decimal point, dot
2 wall socket, power point
3 gullet, throat, food pipe
3 CAT, computed axial tomography, CT
4 microwave meal, ready meal, TV dinner, frozen dinner
4 mock strawberry, false strawberry, gurbir, Indian strawberry
5 objective case, accusative case, oblique case, object case, accusative
5 discipline, sphere, area, domain, sector
6 radio theater, dramatized audiobook, audio theater, radio play, radio

drama, audio play
6 integrator, reconciler, consolidator, mediator, harmonizer, uniter
7 invite, motivate, entreat, ask for, incentify, ask out, encourage
7 curtail, craw, yield, riding crop, harvest, crop, hunting crop

Table 2.4: Examples of extracted synses using the proposed graph clustering method
from the graph of ambiguous synonyms.

and applications to real graphs can be found in [6, 9, 10].
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Chapter 3

Word Sense Embeddings

Materials of this chapter are based on papers [17, 20] from the list of 14 publications the

thesis is based on.

3.1 Introduction

In this chapter, graph clustering is applied to lexical-semantic networks generated from

vector representations of words to obtain vector representations of word senses.

Word sense embedding learning task considered in this chapter is as following. Input

is a set of word vectors (word embeddings) of an ambiguous vocabulary V : ∀v ∈ V

∃v ∈ Rd, where d is dimensionality of vector space. Outputs of the task are (i) a word

sense inventory S: ∀v ∈ V ∃{s1, ..., sk} : si ⊂ V , where k is the number of senses of word

v, and (ii) a set of word sense vectors ∀si ∃si ∈ Rd.

A simple yet effective approach for learning such word sense embeddings is introduced.

In contrast to existing techniques, which either directly learn sense representations from

corpora or rely on sense inventories from lexical resources, our approach can induce a sense

inventory from existing word embeddings via clustering of ego-networks of related words.

An integrated WSD mechanism enables labelling of words in context with learned sense

vectors, which gives rise to downstream applications.
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Similarity Graph

Learning Word Vectors

Word Sense Induction

Text Corpus

Word Vectors

Word Similarity Graph

Pooling of Word Vectors
Sense Inventory

Sense Vectors
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4 3

Figure 3-1: Schema of the word sense embeddings learning method SenseGram.

3.2 Method

The method consists of the four main stages depicted in Figure 3-1: (1) learning word

embeddings; (2) building a graph of nearest neighbours based on vector similarities; (3)

induction of word senses using ego-network clustering; and (4) aggregation of word vectors

with respect to the induced senses.

The method can use existing word embeddings, sense inventories and word similarity

graphs. To demonstrate such use-cases and to study the performance of the method in

different settings, as variants of the complete pipeline presented in Figure 3-1, we

experiment with two additional setups. The sense vectors are then constructed by

averaging embeddings of words in each resulting cluster. In order to use these sense

vectors for word sense disambiguation in text, the authors compute the probabilities of

sense vectors of a word given its context or the similarity of the sense vectors to the

context. Below we describe each of the stages of the method in detail.

Learning Word Vectors

To learn word vectors, we use the word2vec [48] and fastText [49] but similar pre-trained

word embeddings can be used. The final sense embeddings remain in the same vector space

as these input word vectors.

Calculating Word Similarity Graph

At this step, we build a graph of word similarities, such as (table, desk, 0.78). For each

word we retrieve its 200 nearest neighbours. This number is motivated by prior studies [50,

51]: as observed, only few words have more strongly semantically related words. This graph

is computed either based on word embeddings learned during the previous step or using

semantic similarities provided by the JoBimText framework [50].

For similarities using word embeddings, such as word2vec, nearest neighbours of a term
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Figure 3-2: Visualization of the ego-network of “table” with furniture and data sense
clusters. Note that the target “table” is excluded from clustering.

are terms with the highest cosine similarity of their respective vectors. For similarities using

JoBimText (JBT) every word is represented as a bag of sparse dependency-based features

extracted using the Malt parser and collapsed using an approach similar to [52]. Features

are normalized using the LMI score [53] and further pruned down. Similarity of two words

is equal to the number of common features.

Word Sense Induction: a Baseline Algorithm

A word sense is represented by a word cluster. For instance the cluster “chair, bed,

bench, stool, sofa, desk, cabinet” can represent the sense “table (furniture)”. To induce

senses, first we construct an ego-network G of a word t and then perform graph clustering

of this network. The identified clusters are interpreted as senses (see Figure 3-2). Words

referring to the same sense tend to be tightly connected, while having fewer connections to

words referring to different senses.

The sense induction presented in Algorithm 2 processes one word t of the word similarity

graph T per iteration. First, we retrieve nodes V of the ego-network G: these are the

N most similar words of t according to T . The target word t itself is not part of the

ego-network. Second, we connect the nodes in G to their n most similar words from T .

Finally, the ego-network is clustered with the Chinese Whispers algorithm [54]. This method

is parameter free, thus we make no assumptions about the number of word senses.

The sense induction algorithm has three meta-parameters: the ego-network size (N) of
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Algorithm 2 Word sense induction: Baseline Algorithm.
input : T – word similarity graph, N – ego-network size, n – ego-network connectivity, k

– minimum cluster size
output: for each term t ∈ T , a clustering St of its N most similar terms

1 foreach t ∈ T do
2 V ← N most similar terms of t from T

G← graph with V as nodes and no edges E

3 foreach v ∈ V do
4 V ′ ← n most similar terms of v from T

foreach v′ ∈ V ′ do
5 if v′ ∈ V then add edge (v, v′) to E
6 end

7 end
8 St ← ChineseWhispers(G)

St ← {s ∈ St : |s| ≥ k}

9 end

the target ego word t; the ego-network connectivity (n) is the maximum number of

connections the neighbour v is allowed to have within the ego-network; the minimum size

of the cluster k. The n parameter regulates the granularity of the inventory. In the

experiments, we set the N to 200, n to 50, 100 or 200 and k to 5 or 15 to obtain different

granulates, cf. [55]. Each word in a sense cluster has a weight which is equal to the

similarity score between this word and the ambiguous word t.

Word Sense Induction: an Improved Algorithm

One of the downsides of the described above algorithm is noise in the generated graph,

namely, unrelated words and wrong connections. They hamper the separation of the graph.

Another weak point is the imbalance in the nearest neighbour list, when a large part of it

is attributed to the most frequent sense, not sufficiently representing the other senses. This

can lead to construction of incorrect sense vectors.

We suggest an improved procedure of graph construction that uses the interpretability of

vector addition and subtraction operations in word embedding space [56] while the previous

algorithm only relies on the list of nearest neighbours in word embedding space. The key

innovation is the use of vector subtraction to find pairs of most dissimilar graph nodes and

construct the graph only from the nodes included in such “anti-edges”. Thus, the algorithm

is based on graph-based word sense induction, but it also relies on vector-based operations

between word embeddings to perform filtering of graph nodes. Analogously to the method
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above, we construct a semantic relatedness graph from a list of nearest neighbours, but we

filter this list using the following procedure:

1. Extract a list N = {w1, w2, ..., wN} of N nearest neighbours for the target (ego)

word vector w.

2. Compute a list ∆ = {δ1, δ2, ..., δN} for each wi in N , where δi = w−wi. The vectors

in δ contain the components of sense of w which are not related to the corresponding

nearest neighbours from N .

3. Compute a list N = {w1, w2, ..., wN}, such that wi is in the top nearest neighbours

of δi in the embedding space. In other words, wi is a word which is the most similar

to the target (ego) word w and least similar to its neighbour wi. We refer to wi as an

anti-node of wi. The set of N nearest neighbours and their anti-nodes form a set of

anti-edges i.e. pairs of most dissimilar nodes – those which should not be connected:

E = {(w1, w1), (w2, w2), ..., (wN , wN )}.

To clarify this, consider the target (ego) word w = python, its top similar term

w1 = Java and the resulting anti-node wi = snake which is the top related term of

δ1 = w − w1. Together they form an anti-edge (wi, wi) = (Java, snake) composed of

a pair of semantically dissimilar terms.

4. Construct V , the set of vertices of the semantic graph G = (V,E) from the list of

anti-edges E, with the following recurrent procedure: V = V ∪{wi, wi : wi ∈ N , wi ∈

N}, i.e. we add a word from the list of nearest neighbours and its anti-node only

if both of them are nearest neighbours of the original word w. We do not add w’s

nearest neighbours if their anti-nodes do not belong to N . Thus, we add only words

which can help discriminating between different senses of w.

5. Construct the set of edges E as follows. For each wi ∈ N we extract a set of its K

nearest neighbours N ′
i = {u1, u2, ..., uK} and define

E = {(wi, uj) : wi ∈ V, uj ∈ V, uj ∈ N ′
i , uj ̸= wi}. In other words, we remove

edges between a word wi and its nearest neighbour uj if uj is also its anti-node.

According to the hypothesis, wi and wi belong to different senses of w, so they

should not be connected (i.e. we never add anti-edges into E). Therefore, we

consider any connection between them as noise and remove it.
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Note that N (the number of nearest neighbours for the target word w) and K (the

number of nearest neighbours of wci) do not have to match. The difference between these

parameters is the following. N defines how many words will be considered for the

construction of ego-graph. On the other hand, K defines the degree of relatedness between

words in the ego-graph — if K = 50, then we will connect vertices w and u with an edge

only if u is in the list of 50 nearest neighbours of w. Increasing K increases the graph

connectivity and leads to lower granularity of senses.

The described vertices selection procedure allows picking the most representative

members of these clusters which are better at discriminating between the clusters. In

addition to that, it helps dealing with the cases when one of the clusters is

over-represented in the nearest neighbour list. In this case, many elements of such a

cluster are not added to V because their anti-nodes fall outside the nearest neighbour list.

This also improves the quality of clustering.

After the graph construction, the clustering is performed using the Chinese Whispers

algorithm [46].

Figure 3-3 shows an example of the resulting pruned graph of for the word Ruby for

N = 50 nearest neighbours in terms of the fastText cosine similarity. In contrast to the

baseline method described above where all 50 terms are clustered, in the method presented

in this section we sparsify the graph by removing 13 nodes which were not in the set of

the “anti-edges” i.e. pairs of most dissimilar terms out of these 50 neighbours. Examples

of anti-edges i.e. pairs of most dissimilar terms for this graph include: (Haskell, Sapphire),

(Garnet, Rails), (Opal, Rubyist), (Hazel, RubyOnRails), and (Coffeescript, Opal).

Pooling of Word Vectors

At this stage, we calculate sense embeddings for each sense in the induced inventory.

We assume that a word sense is a composition of words that represent the sense. We define

a sense vector as a function of word vectors representing cluster items. Let W be a set of

all words in the training corpus and let Si = {w1, . . . , wn} ⊆W be a sense cluster obtained

during the previous step. Consider a function vecw : W → Rm that maps words to their

vectors and a function γi : W → R that maps cluster words to their weight in the cluster

Si. We experimented with two ways to calculate sense vectors: unweighted average of word

vectors:

si =

∑n
k=1 vecw (wk)

n
; (3.1)
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Vector Nearest Neighbours

table tray, bottom, diagram, bucket, brackets, stack, basket, list, parenthesis, cup,
trays, pile, playfield, bracket, pot, drop-down, cue, plate

table#0 leftmost#0, column#1, randomly#0, tableau#1, top-left#0, indent#1,
bracket#3, pointer#0, footer#1, cursor#1, diagram#0, grid#0

table#1 pile#1, stool#1, tray#0, basket#0, bowl#1, bucket#0, box#0, cage#0,
saucer#3, mirror#1, birdcage#0, hole#0, pan#1, lid#0

Table 3.1: Neighbours of the word “table” and its senses produced by the method.
The neighbours of the initial vector belong to both senses, while those of sense vectors
are sense-specific.

and weighted average of word vectors:

si =

∑n
k=1 γi(wk)vecw (wk)∑n

k=1 γi(wk)
. (3.2)

Table 3.1 provides an example of weighted pooling results. While the original neighbours

of the word “table” contain words related to both furniture and data, the neighbours of

the sense vectors are either related to furniture or data, but not to both at the same time.

Besides, each neighbour of a sense vector has a sense identifier as we calculate cosine between

sense vectors, not word vectors.

Word Sense Disambiguation

This section describes how sense vectors are used to disambiguate a word in a context.

Given a target word w and its context words C = {c1, . . . , ck}, we first map w to a set of

its sense vectors according to the inventory: S = {s1, . . . , sn}. We use two strategies to

choose a correct sense taking vectors for context words either from the matrix of context

embeddings or from the matrix of word vectors. The first one is based on sense probability

in given context:

s∗ = argmax
i

P (C|si) = argmax
i

1

1 + e−c̄c·si
, (3.3)

where c̄c is the mean of context embeddings: k−1
k∑

i=1

vecc(ci) and function vecc : W → Rm

maps context words to context embeddings. Using the mean of context embeddings to

calculate sense probability is natural with the CBOW because this model optimizes exactly

the same mean to have high scalar product with word embeddings for words occurred in

context and low scalar product for random words [48].
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The second disambiguation strategy is based on similarity between sense and context:

s∗ = argmax
i

sim(si, C) = argmax
i

c̄w · si
∥c̄w∥ · ∥si∥

, (3.4)

where c̄w is the mean of word embeddings: c̄w = k−1
k∑

i=1

vecw(ci). The latter method

uses only word vectors (vecw) and require no context vectors (vecc). This is practical, as

the standard implementation of word2vec does not save context embeddings and thus most

pre-computed models provide only word vectors.

To improve WSD performance we also apply context filtering. Typically, only several

words in context are relevant for sense disambiguation, like “chairs” and “kitchen” are

for “table” in “They bought a table and chairs for kitchen.” For each word cj in context

C = {c1, . . . , ck} we calculate a score that quantifies how well it discriminates the senses:

max
i

f(si, cj)−min
i

f(si, cj), (3.5)

where si iterates over senses of the ambiguous word and f is one of the disambiguation

strategies: either P (cj |si) or sim(si, cj). The p most discriminative context words are used

for disambiguation.

Knowledge-Free Labelling of Induced Senses

We label each word cluster representing a sense to make them and the WSD results

interpretable by humans. In the chapter below we show how hypernyms can be used label

the clusters, e.g. “animal” in the “python (animal)”. Yet hypernyms are not available for

some low-resourced languages. Therefore, we describe a simpler method to select a keyword

which would help to interpret each cluster. For each graph node v ∈ V we count the number

of anti-edges it belongs to:

keyness(v) = |{(wi, wi) : (wi, wi) ∈ E ∧ (v = wi ∨ v = wi)}|. (3.6)

A graph clustering yields a partition of V into n clusters: V = {V1, V2, ..., Vn}. For each

cluster Vi we define a keyword wkey
i as the word with the largest number of anti-edges

keyness(·) among words in this cluster.
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3.3 Results

Main experiments were conducted for English language. Besides, this method was used

to induce a collection of sense inventories for 158 languages on the basis of the original

pre-trained fastText word embeddings by [57], enabling WSD in these languages.

The results suggest that, the presented algorithms on English WSI datasets and multi-

lingual lexical similarity and relatedness task show that the performance of the method is

comparable to state-of-the-art unsupervised WSD systems. Details of experimental results

and their analysis can be found in [17,20].
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Figure 3-3: The graph of nearest neighbours of the word Ruby separated according
several senses: programming languages, female names, gems, different spellings of the
word Ruby. Node size denotes word importance with the largest node in the cluster
being used as a keyword to interpret an induced word sense.
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Chapter 4

Unsupervised Interpretable

Word Sense Disambiguation

Materials of this chapter are based on papers [1] and [18] from the list of 14 publications

the thesis is based on.

4.1 Introduction

In this chapter, an unsupervised, knowledge-free, and interpretable approach to word sense

induction and disambiguation is proposed building on top of techniques presented in the

previous two chapters.

The task formulation here as following. Input is (i) a word sense inventory S, and

(ii) a mention of a word v in a context C. The output is (i) a word sense identifier

of the word v corresponding to the mention in the context C, and (ii) a human-readable

representation of the word sense s.

The current trend in NLP is the use of highly opaque models, e.g. neural networks

and word embeddings. While these models yield state-of-the-art results on a range of

tasks, their drawback is poor interpretability. On the example of word sense induction and

disambiguation (WSID), it is shown that it is possible to develop an interpretable model that

matches the state-of-the-art models in accuracy. Namely, an unsupervised, knowledge-free

WSID approach is presented, which is interpretable at three levels: word sense inventory,

sense feature representations, and disambiguation procedure. Experiments show that our
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Figure 4-1: Outline of unsupervised interpretable method for word sense induction
and disambiguation.

model performs on par with state-of-the-art word sense embeddings and other unsupervised

systems while offering the possibility to justify its decisions in human-readable form.

A word sense disambiguation (WSD) system takes as input a target word t and its

context C. The system returns an identifier of a word sense si from the word sense

inventory {s1, ..., sn} of t, where the senses are typically defined manually in advance.

Despite significant progress in methodology during the two last decades [58–60], WSD is

still not widespread in applications [61], which indicates the need for further progress. The

difficulty of the problem largely stems from the lack of domain-specific training data. A

fixed sense inventory, such as the one of WordNet [62], may contain irrelevant senses for

the given application and at the same time lack relevant domain-specific senses. Word

sense induction from domain-specific corpora is a supposed to solve this problem.

However, most approaches to word sense induction and disambiguation, e.g. [63–65], rely

on clustering methods and dense vector representations that make a WSD model

uninterpretable as compared to knowledge-based WSD methods.

Interpretability of a statistical model is important as it lets us understand the reasons

behind its predictions [66–68]. Interpretability of WSD models (1) lets a user understand

why in the given context one observed a given sense (e.g., for educational applications);

(2) performs a comprehensive analysis of correct and erroneous predictions, giving rise to

improved disambiguation models.

The contribution of this chapter is an interpretable unsupervised knowledge-free WSD

method. The novelty of our method is in (1) a technique to disambiguation that relies on

induced inventories as a pivot for learning sense feature representations, (2) a technique for

making induced sense representations interpretable by labeling them with hypernyms and

images.
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Figure 4-2: Interpretation of the senses of the word “table” at three levels by our
method: (1) word sense inventory; (2) sense feature representation; (3) results of
disambiguation in context. The sense labels (“furniture” and “data”) are obtained
automatically based on cluster labeling with hypernyms. The images associated with
the senses are retrieved using a search engine:“table data” and “table furniture”.

4.2 Method

Our unsupervised word sense disambiguation method consist of the five steps illustrated

in Figure 4-1: extraction of context features (Section 3.1); computing word and feature

similarities; word sense induction; labeling of clusters with hypernyms and images,

disambiguation of words in context based on the induced inventory, and finally

interpretation of the model. Feature similarity and co-occurrence computation steps

(drawn with a dashed lines) are optional, since they did not consistently improve

performance.

Extraction of Context Features The goal of this step is to extract word-feature

counts from the input corpus. In particular, we extract features based on dependencies,

word co-occurrences, and statistical language models. Also graph of word and feature

similarities are computed and used.

Word Sense Induction We induce a sense inventory by clustering of ego-network of

similar words. In our case, an inventory represents senses by a word cluster, such as “chair,

bed, bench, stool, sofa, desk, cabinet” for the “furniture” sense of the word “table”. The

sense induction processes one word t of the distributional thesaurus T per iteration. First,

we retrieve nodes of the ego-network G of t being the N most similar words of t according
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to T (see Figure 4-2 (1)). Note that the target word t itself is not part of the ego-network.

Second, we connect each node in G to its n most similar words according to T . Finally,

the ego-network is clustered with Chinese Whispers [54]. The n parameter regulates the

granularity of the inventory: we experiment with n ∈ {200, 100, 50} and N = 200.

Labeling Induced Senses with Hypernyms and Images To improve

interpretability of induced senses, we assign an image to each word in the cluster

(see Figure 4-2) by querying the Bing image search APIusing the query composed of the

target word and its hypernym, e.g. “jaguar car”. The first hit of this query is selected to

represent the induced word sense.

Algorithm 3 Unsupervised WSD with induced word sense inventory.
input : Word t, context features C, sense inventory I, word-feature table F , use largest cluster

back-off LCB, use feature expansion FE.
output: Sense of the target word t in inventory I and confidence score.

10 S ← getSenses (I, t)
if FE then

11 C ← featureExpansion(C)
12 end
13 foreach (sense, cluster) ∈ S do
14 α[sense]← {}

foreach w ∈ cluster do
15 foreach c ∈ C do
16 α[sense]← α[sense] ∪ F (w, c)

17 end

18 end

19 end
20 if maxsense∈S mean(α[sense]) = 0 then
21 if LCB then
22 return argmax( ,cluster)∈S |cluster|

23 else
24 return −1 // reject to classify

25 end

26 else
27 return argmax(sense, )∈Smean(α[sense])

28 end

WSD with Induced Word Sense Inventory To disambiguate a target word t in

context, we extract context features C and pass them to Algorithm 3. We use the induced

sense inventory I and select the sense that has the largest weighted feature overlap with

context features or fall back to the largest cluster back-off when context features C do not

match the learned sense representations.
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The algorithm starts by retrieving induced sense clusters of the target word (line 1).

Next, the method starts to accumulate context feature weights of each sense in α[sense].

Each word w in a sense cluster brings all its word-feature counts F (w, c): see lines 5-12.

Finally, a sense that maximizes mean weight across all context features is chosen (lines

13-21). Optionally, we can resort to the largest cluster back-off (LCB) strategy in case if

no context features match sense representations.

4.3 Results

In experiments, two lexical sample collections suitable for evaluation of unsupervised WSD

systems are used: Turk Bootstrap Word Sense Inventory (TWSI) dataset introduced by [69]

and SemEval 2013 word sense induction dataset by [70].

The presented method yields performance comparable to the state-of-the-art

unsupervised systems, including two methods based on word sense embeddings. Note,

however, that none of the rivalling systems has a comparable level of interpretability to

our approach. Further details of experimental results can be found in [1] and [18].

In addition to experimental results, an open source implementation of the method

featuring a web demo of several pre-trained models was released.1 System architecture is

illustrated in Figure 4-3: it features API and a web application with user interface for

interpretable WSD and sense inventory navigation. The application performs

human-interpretable disambiguation of a text entered by a user in single word

disambiguation mode (cf. Figure 4-4) and all words disambiguation mode (cf. Figure 4-5).

1http://www.jobimtext.org/wsd
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Figure 4-4: Single word disambiguation mode: disambiguation of the word “Jaguar”
(B) in the sentence “Jaguar is a large spotted predator of tropical America similar
to the leopard.” (A) using the WSD disambiguation model based on cluster word
features (C). The predicted sense is summarized with a hypernym and an image (D)
and further represented with usage examples, semantically related words, and typical
context clues. Each of these elements is extracted automatically. The reasons of the
predictions are provided in terms of common sparse features of the input sentence
and a sense representation (E). The induced senses are linked to BabelNet (F).

Figure 4-5: All words disambiguation mode: results of disambiguation of nouns.
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Chapter 5

Linking Word Sense

Representations

Materials of this chapter are based on papers [7,8] from the list of 14 publications the thesis

is based on.

5.1 Introduction

In this chapter, methods for linking of word sense representations induced automatically

from text using the methods presented in the previous chapters to lexical-semantic networks

constructed manually, e.g. Wordnets, are presented. The linking is performed on the level

of individual word senses.

The task of word sense linking is as following. Inputs are (i) a

manually-constructed lexical-semantic graph W , e.g. WordNet, and (ii)

distributionally-induced lexical-semantic graph, e.g. the one introduced in the previous

chapter, T = {(j, Rj , Hj)}, where j is a sense identifier, i.e. mouse:1, Rj the set of its

semantically related senses, i.e. {keyboard:1, computer:0, . . . }, Hj the set of its hypernym

senses, i.e. {equipment:3, . . . }. Output is a mapping M : a set of pairs e.g.

(source, target) where source ∈ T.senses is a sense of T and target ∈ W.senses ∪ source

is the most suitable sense of W .

We present an approach to combining distributional semantic representations induced

from text corpora with manually constructed lexical-semantic networks. While both kinds
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linked to the lexical resource.

of semantic resources are available with high lexical coverage, our aligned resource

combines the domain specificity and availability of contextual information from

distributional models with the conciseness and high quality of manually crafted lexical

networks. We start with a distributional representation of induced senses of vocabulary

terms, which are accompanied with rich context information given by related lexical items.

We then automatically disambiguate such representations to obtain a full-fledged

proto-conceptualization, i.e. a typed graph of induced word senses. In a final step, this

proto-conceptualization is aligned to a lexical ontology, resulting in a hybrid aligned

resource. Moreover, unmapped induced senses are associated with a semantic type in

order to connect them to the core resource.

5.2 Method

The construction of our hybrid aligned resource (HAR) builds upon methods used to link

various manually constructed lexical resources to construct BabelNet [71] and UBY [72],

among others. In our method, however, linking is performed between two networks that

are structurally similar, but have been constructed in two completely different ways: one

resource is built using an unsupervised bottom-up approach from text corpora, while the

second is constructed in a top-down manner using manual labor, e.g., codified knowledge

from human experts such as lexicographers (WordNet). In particular, the method consists

of two major phases, as illustrated in Figure 5-1.

The upper part correspond to the method described in the chapters above i.e. building
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Algorithm 4 Linking induced senses to senses of a lexical resource.

Input: T = {(ji, Rji , Hji)}, W , th, m
Output: M = (source, target)
1: M = ∅
2: for all (ji, Rji , Hji) ∈ T.monosemousSenses do
3: C(ji) = W.getSenses(ji.lemma, ji.POS)
4: if |C(ji)| == 1, let C(ji) = {c0} then
5: if sim(ji, c0, ∅) ≥ th then
6: M = M ∪ {(ji, c0)}
7: for step = 1; step ≤ m ; step = step+ 1 do
8: Mstep = ∅
9: for all (ji, Rji , Hji) ∈ T.senses/M.senses do
10: C(ji) = W.getSenses(ji.lemma, ji.POS)
11: for all ck ∈ C(ji) do
12: rank(ck) = sim(ji, ck,M)
13: if rank(ck) has a single top value for ct then
14: if rank(ct) ≥ th then
15: Mstep = Mstep ∪ {(ji, ct)}
16: M = M ∪Mstep

17: for all (ji, Rji , Hji) ∈ T.senses/M.senses do
18: M = M ∪ {(ji, ji)}
19: return M

interpretable word sense representations from text in an unsupervised manner. Below we

describe how a corpus-induced semantic network (a proto-conceptualization) is linked to a

manually created semantic network, represented by a lexical resource.

Linking Induced Senses to Senses of the Lexical Resource

We link each sense in our proto-conceptualization (PCZ) to the most suitable sense

(if any) of a Lexical Resource (LR, see Figure 5-1 step 3). There exist many algorithms

for knowledge base linking [73]: here, we build upon simple, yet high-performing previous

approaches to linking LRs that achieved state-of-the-art performance. These rely at their

core on computing the overlap between the bags of words built from the LRs’ concept

lexicalizations, e.g., [72, 74] (inter alia). Specifically, we develop i) an iterative approach –

so that the linking can benefit from the availability of linked senses from previous iterations

– ii) leveraging the lexical content of the source and target resources. Algorithm 4 takes as

input:

1. a PCZ T = {(ji, Rji , Hji)} where ji is a sense identifier (i.e. mouse:1), Rji the set of

its semantically related senses (i.e. Rji = {keyboard:1, computer:0, . . . } and Hji the

set of its hypernym senses (i.e. Hji = {equipment:3, . . . };
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2. a LR W : we experiment with: WordNet, a lexical database for English and BabelNet,

a very large multilingual ‘encyclopedic dictionary’;

3. a threshold th over the similarity between pairs of concepts and a number m of

iterations as a stopping criterion.

The algorithm outputs a mapping M , which consists of a set of pairs of the kind

(source, target) where source ∈ T.senses is a sense of the input PCZ T and

target ∈ W.senses ∪ source is the most suitable sense of W or source when no such sense

has been identified.

The algorithm starts by creating an empty mapping M (line 1). Then for each

monosemous sense (e.g., Einstein:0 is the only sense in the PCZ for the term Einstein) it

searches for a candidate monosemous sense (lines 2-6). If such monosemous candidate

senses exist (line 4), we compare the two senses (line 5) with the following similarity

function:

sim(j, c,M) =
|T.BoW (j,M,W ) ∩W.BoW (c)|

|T.BoW (j,M,W )|
, (5.1)

where

1. T.BoW (j,M,W ) is the set of words containing all the terms extracted from

related/hypernym senses of j and all the terms extracted from the

related/hypernym (i.e., already linked in M) synsets in W. For each synset from the

LR, we use all synonyms and content words of the gloss.

2. W.BoW (c) contains the synonyms and the gloss content words for the synset c and

all the related synsets of c.

Then a new link pair (ji, c0) is added to M if the similarity score between ji and c0 meets

or exceeds the threshold th (line 5). At this point, we collected a first set of disambiguated

(monosemous) senses in M and start to iteratively disambiguate the remaining

(polysemous) senses in T (lines 7-16). This iterative disambiguation process is similar to

the one we described for the monosemous case (lines 2-6), with the main difference that,

due to the polysemy of the candidates synsets, we instead use the similarity function to

rank all candidate senses (lines 11-12) and select the top-ranked candidates for the

mapping (lines 13-15). At the end of each iteration, we add all collected pairs to M (line
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Algorithm 5 Typing of the unmapped induced senses.

Input: M = (source, target), W
Output: H = (source, type)
1: H = ∅
2: for all (source, target) ∈M do
3: if target /∈W then
4: Rank = 0
5: for all related ∈ Rsource,∃(related, trelated) ∈M, trelated ∈W do
6: for all hop ∈ (1, 2, 3) do
7: for all ancestor ∈W.ancestors(trelated, hop) do
8: Rank(ancestor) = Rank(ancestor) + 1.0/hop
9: for all ntype ∈ Rank.top(toph) do
10: H = H ∪ (source, ntype)
11: return H

16). Finally, all unlinked j of T , i.e. induced senses that have no corresponding LR sense,

are added to the mapping M (lines 17- 18).

Typing of the Unmapped Induced Senses

An approach based on the bag-of-words from concept lexicalizations has the advantage of

being simple, as well as high performing as we show later in the evaluation – cf. also findings

from [74]. However, there could be still PCZ senses that cannot be mapped to the target

lexical resource, e.g., because of vocabulary mismatches, sparse concepts’ lexicalizations, or

because they are simply absent in the resource.

Consequently, in the last phase of our resource creation pipeline we link these ‘orphan’

PCZ senses (i.e., those from lines 17-18 of Algorithm 4), in order to obtain a unified resource,

and propose a method to infer the type of those concepts that were not linked to the target

lexical resource. For example, so far we were not able to find a BabelNet sense for the

PCZ item Roddenberry:10 (the author of ‘Star Trek’). However, by looking at the linked

related concepts that share the same BabelNet hypernym – e.g. the PCZ items Asimov:3

is-a authorBabelNet , Tolkien:7 is-a authorBabelNet , Heinlein:8 is-a authorBabelNet , etc. – we can

infer that Roddenberry:10 is-a author:1, since the latter was linked to the Babel synset

authorBabelNet .

The input of Algorithm 5 consist of the mapping M of a PCZ to a lexical resource W (cf.

Algorithm 4). The output is a new mapping H containing pairs of the kind (source, type)

where type is a type inW for the concept source ∈ PCZ. We first initialize the new mapping

H as an empty set (line 1). Then for all the pairs (source, target) where the target is a
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PCZ ID WordNet ID PCZ Related Terms PCZ Context Clues

mouse:0 mouse:wn1 rat:0, rodent:0, monkey:0, ... rat:conj and, gray:amod, ...
mouse:1 mouse:wn4 keyboard:1, computer:0, printer:0 ... click:-prep of, click:-nn, ....
keyboard:0 keyboard:wn1 piano:1, synthesizer:2, organ:0 ... play:-dobj, electric:amod, ..
keyboard:1 keyboard:wn1 keypad:0, mouse:1, screen:1 ... computer, qwerty:amod ...

Table 5.1: Sample entries of the hybrid aligned resource (HAR) for the words mouse
and keyboard. Trailing numbers indicate sense identifiers. To enrich WordNet sense
representations we rely on related terms and context clues.

concept not included in the target lexical resource W (line 3), we compute a rank of all the

ancestors of each related sense that has a counterpart trelated in W (lines 5-8). In other

words, starting from linked related senses trelated, we traverse the taxonomy hierarchy (at

most for 3 hops) in W and each time we encounter a sense ancestor we increment its rank

by the inverse of the distance to trelated. Finally we add the pairs (source, ntype) to H

for all the ntype at the top toph in the Rank.

Finally, our final resource consists of: i) the proto-conceptualization (PCZ); ii) the

mapping M of PCZ entries to the lexical resource (e.g., WordNet or BabelNet); iii) the

mapping H of suggested types for the PCZ entries not mapped in M .

5.3 Results

Manual evaluations against ground-truth judgments for different stages of our method as

well as an extrinsic evaluation on a knowledge-based word sense disambiguation benchmark

all indicate the high quality of the new hybrid resource. Additionally, we show the benefits of

enriching top-down lexical knowledge resources with bottom-up distributional information

from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym

graphs and learning taxonomies from scratch.

Examples of the linked word senses are provided in Table 5.1 between Wordnet

constructed manually and corpus-induced sense repository from sparse count-based

distributional model (PCZ). Further examples, experimental results and their analysis can

be found in [7, 8].
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Chapter 6

Prediction of Hypernym

Embeddings

Materials of this chapter are based on paper [4] from the list of 14 publications the thesis

is based on.

6.1 Introduction

In this section, a method for extraction of hypernyms based on projection learning and

word embeddings is presented.

Hypernymy is a hierarchical semantic relation between terms, such as (apple, fruit) or

(jaguar, animal). In the former example, the word apple is a hyponym, and the word fruit

is a hypernym. The task we consider in this chapter is given a hyponym to predict its

corresponding hypernym(s).

In contrast to classification-based approaches, projection-based methods require no

candidate hyponym-hypernym pairs. While it is natural to use both positive and negative

training examples in supervised relation extraction, the impact of negative examples on

hypernym prediction was not studied so far. In this chapter, it is shown that explicit

negative examples used for regularization of the model significantly improve performance

compared to the state-of-the-art approach of [75] on three datasets from different

languages.
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6.2 Method

The approach performs hypernymy extraction via regularized projection learning.

Baseline Approach The model of [75] is used as the baseline. In this approach, the

projection matrix Φ∗ is obtained similarly to the linear regression problem, i.e., for the

given row word vectors x⃗ and y⃗ representing correspondingly hyponym and hypernym, the

square matrix Φ∗ is fit on the training set of positive pairs P:

Φ∗ = argmin
Φ

1

|P|
∑

(x⃗,y⃗)∈P

∥x⃗Φ− y⃗∥2 , (6.1)

where |P| is the number of training examples and ∥x⃗Φ− y⃗∥ is the distance between a pair

of row vectors x⃗Φ and y⃗. In the original method, the L2 distance is used. To improve

performance, k projection matrices Φ are learned one for each cluster of relations in the

training set. One example is represented by a hyponym-hypernym offset. Clustering is

performed using the k-means algorithm [76].

Linguistic Constraints via Regularization The nearest neighbors generated using

distributional word vectors tend to contain a mixture of synonyms, hypernyms,

co-hyponyms and other related words [77–79]. In order to explicitly provide examples of

undesired relations to the model, we propose two improved versions of the baseline model:

asymmetric regularization that uses inverted relations as negative examples, and neighbor

regularization that uses relations of other types as negative examples. For that, we add a

regularization term to the loss function:

Φ∗ = argmin
Φ

1

|P|
∑

(x⃗,y⃗)∈P

∥x⃗Φ− y⃗∥2 + λR, (6.2)

where λ is the constant controlling the importance of the regularization term R.

Asymmetric Regularization. As hypernymy is an asymmetric relation, our first

method enforces the asymmetry of the projection matrix. Applying the same transformation

to the predicted hypernym vector x⃗Φ should not provide a vector similar (·) to the initial

hyponym vector x⃗. Note that, this regularizer requires only positive examples P:

R =
1

|P|
∑

(x⃗, )∈P

(x⃗ΦΦ · x⃗)2. (6.3)
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Neighbor Regularization. This approach relies on the negative sampling by explicitly

providing the examples of semantically related words z⃗ of the hyponym x⃗ that penalizes

the matrix to produce the vectors similar to them:

R =
1

|N |
∑

(x⃗,z⃗)∈N

(x⃗ΦΦ · z⃗)2. (6.4)

This regularizer requires negative samples N . In our experiments, we use synonyms of

hyponyms as N , but other types of relations can be also used such as antonyms, meronyms

or co-hyponyms. Certain words might have no synonyms in the training set. In such cases,

we substitute z⃗ with x⃗, gracefully reducing to the previous variation. Otherwise, on each

training epoch, we sample a random synonym of the given word.

Regularizers without Re-Projection. In addition to the two regularizers

described above, that rely on re-projection of the hyponym vector (x⃗ΦΦ), we also tested

two regularizers without re- projection, denoted as x⃗Φ. The neighbor regularizer in this

variation is defined as follows:

R =
1

|N |
∑

(x⃗,z⃗)∈N

(x⃗Φ · z⃗)2. (6.5)

In our case, this regularizer penalizes relatedness of the predicted hypernym x⃗Φ to the

synonym z⃗. The asymmetric regularizer without re-projection is defined in a similar way.

Training of the Models To learn parameters of the considered models we used the

Adam method [80] with the default meta-parameters as implemented in the TensorFlow

framework [81]. We ran 700 training epochs passing a batch of 1024 examples to the

optimizer. Projection matrices were intitialized using the normal distribution N (0, 0.1).

6.3 Results

Evaluation of the proposed methods was done for one Russian and two English

hypernymy datasets. The experiments in the context of the hypernymy prediction task for

both languages show significant improvements of the proposed approach over the

state-of-the-art model without negative sampling. Further experimental results and their

analysis can be found in [4].
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Chapter 7

Extracting of Hypernyms via Sense

Graph Clustering

Materials of this chapter are based on papers [19] from the list of 14 publications the thesis

is based on.

7.1 Introduction

In this chapter, it is shown how distributionally-induced semantic classes can be helpful for

extracting hypernyms.

The task considered in this chapter is given a set of noisy hypernyms

H = {(wi, wj), (wk, wl), ..., (wy, wz)} to obtain an updated set of cleansed hypernyms

H ′ which (i) do not contain wrong relations, (ii) adds missing correct relations .

Methods for inducing sense-aware semantic classes using distributional semantics are

presented below. These classes are used for filtering noisy hypernymy relations. Denoising

of hypernyms is performed by labelling each semantic class with its hypernyms. On the

one hand, this allows us to filter out wrong extractions using the global structure of

distributionally similar senses. On the other hand, we infer missing hypernyms via label

propagation to cluster terms. We conduct a large-scale crowdsourcing study showing that

processing of automatically extracted hypernyms using our approach improves the quality

of the hypernymy extraction in terms of both precision and recall. Furthermore, the

utility of the method is demonstrated in the domain taxonomy induction task, achieving
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the state-of-the-art results on a SemEval-2016 task on taxonomy induction.
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Figure 7-1: Outline of the approach: sense-aware distributional semantic classes are
induced from a text corpus and then used to filter noisy hypernyms database (e.g.
extracted by an external method from a text corpus).

7.2 Method

In this section, a method for unsupervised induction of distributional sense-aware semantic

classes is presented. Also we show how to perform denoising of hypernyms using the induced

structures. As illustrated in Figure 7-1, our method induces a sense inventory from a text

corpus using the method of [82,83], and clusters these senses.

Sample word senses from the induced semantic clusters are presented in Table 7.1. The

difference of the induced sense inventory from the sense clustering is that word senses in

the induced resource are specific to a given target word, e.g. words “apple” and “mango”

have distinct “fruit” senses, represented by a list of related senses. On the other hand,

Sense clusters represent a global and not a local clustering of senses, i.e. the “apple” in the

“fruit” sense can be a member of only one cluster. This is similar to WordNet, where one

sense can only belong to a single synset. Below we describe each step of our method.

Word Sense Induction from a Text Corpus

Each word sense s in the induced sense inventory S is represented by a list of neighbors

N (s). Extraction of this network is performed using the method of [82] and involves three

steps: (1) building a distributional thesaurus, i.e. a graph of related ambiguous terms [84];

(2) word sense induction via clustering of ego networks [85, 86] of related words using the

Chinese Whispers graph clustering algorithm [46]; (3) disambiguation of related words and

hypernyms. The word sense inventory used in our experiment was extracted from a 9.3

billion tokens corpus, which is a concatenation of Wikipedia, ukWac [87], LCC [88] and
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Global Sense Cluster: Semantic Class, c ⊂ S Hypernyms, H(c) ⊂ S

peach#1, banana#1, pineapple#0, berry#0, blackberry#0, grape-
fruit#0, strawberry#0, blueberry#0, fruit#0, grape#0, melon#0,
orange#0, pear#0, plum#0, raspberry#0, watermelon#0, apple#0,
apricot#0, watermelon#0, pumpkin#0, berry#0, mangosteen#0,
...

vegetable#0, fruit#0,
crop#0, ingredient#0,
food#0, ·

C#4, Basic#2, Haskell#5, Flash#1, Java#1, Pascal#0, Ruby#6,
PHP#0, Ada#1, Oracle#3, Python#3, Apache#3, Visual Basic#1,
ASP#2, Delphi#2, SQL Server#0, CSS#0, AJAX#0, JavaScript#0,
SQL Server#0, Apache#3, Delphi#2, Haskell#5, .NET#1, CSS#0,
...

programming
language#3,
technology#0,
language#0, format#2,
app#0

Table 7.1: Sample of the induced sense clusters representing “fruits” and
“programming language” semantic classes. Similarly to the induced word senses,
the semantic classes are labeled with hypernyms. In contrast to the induced word
senses, which represent a local clustering of word senses (related to a given word)
semantic classes represent a global sense clustering of word senses.

Gigaword [89]. Note that analogous graphs of senses can be obtained using word sense

embeddings, see [65, 90]. Similarly to other distributional word graphs, the induced sense

inventory sense network is scale-free, cf. [91]. Experiments show that a global clustering of

this network can lead to a discovery of giant components, which are useless in our context as

they represent no semantic class. To overcome this problem, we re-build the sense network.

Representing Senses with Ego Networks

To perform a global clustering of senses, we represent each induced sense s by a

second-order ego network [86]. An ego network is a graph consisting of all related senses

R(s) of the ego sense s reachable via a path of length one or two, defined as:

{sj : (sj ∈ N (s)) ∨ (si ∈ N (s) ∧ sj ∈ N (si))}. (7.1)

Each edge weightWs(si, sj) between two senses is taken from the induced sense inventory

network [82] and is equal to a distributional semantic relatedness score between si and sj .

Senses in the induced sense inventory may contain a mixture of different senses

introducing noise in a global clustering, e.g. “Python” in the animal sense is related to

both car and snake senses. To minimize the impact of the word sense induction errors, we

filter out ego networks with a highly segmented structure. Namely, we cluster each ego

network with the Chinese Whispers algorithm and discard networks for which the cluster

containing the target sense s contains less than 80% nodes of the respective network to
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Figure 7-2: Post-processing of hypernymy relations using distributionally induced
semantic classes, represented by clusters of induced word senses labeled with
hypernyms. The word postfix, such as #1, is a sense ID. The wrong hypernyms
outside the cluster labels are removed, while the missing ones not present in the noisy
database of hypernyms are added.

ensure semantic coherence inside the word groups. Besides, all nodes of a network not

appearing in the cluster containing the ego sense s are also discarded.

Global Sense Graph Construction

The goal of this step is to merge ego networks of individual senses constructed at the

previous step into a global graph. We compute weights of the edges of the global graph by

counting the number of co-occurrences of the same edge in different networks:

W(si, sj) =
∑
s∈S
Ws(si, sj). (7.2)

For filtering out noisy edges, we remove all edges with the weight less than a threshold t.

Finally, we apply the function E(w) that re-scales edge weights. We tested identity function

(count) and the natural logarithm (log):

W(si, sj) =


E(W(si, sj)) if W(si, sj) ≥ t,

0 otherwise.

(7.3)

Clustering of Word Senses

The core of our method is the induction of semantic classes by clustering the global

graph of word senses. We use the Chinese Whispers algorithm to make every sense appear

only in one cluster c. Results of the algorithm are groups of strongly related word senses

that represent different concepts.

We use two clustering versions in our experiments: the fine-grained model clusters

208,871 induced word senses into 1,870 semantic classes, and the coarse-grained model that
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groups 18,028 word senses into 734 semantic classes. To find optimal parameters of our

method, we compare the induced labeled sense clusters to lexical semantic knowledge from

WordNet 3.1 [92] and BabelNet 3.7 [93].

Denoising Hypernyms using the Induced Distributional Semantic Classes

By labeling the induced semantic classes with hypernyms we can remove wrong ones or

add those that are missing as illustrated in Figure 7-2. Each sense cluster is labeled with the

hypernyms, where the labels are the common hypernyms of the cluster word (cf. Table 7.1).

Hypernyms that label no sense cluster are filtered out. In addition, new hypernyms can

be generated as a result of labeling. Additional hypernyms are discovered by propagating

cluster labels to the rare words without hypernyms, e.g. “mangosteen” in Figure 7-2. For

labeling we used the tf–idf: hypernyms that appear in many senses s are down-weighted:

tf–idf(h) =
∑
s∈c
H(s) · log |S|

|h ∈ H(s) : ∀s ∈ S|
, (7.4)

where
∑
s∈c
H(s) is a sum of weights for all hypernyms for each sense s, per each cluster c. We

label each sense cluster c with its top five hypernymsH(c). Each hypernym is disambiguated

using the method of [82]. Namely, we calculate the cosine similarity between the context

(the current sense cluster) and the induced senses (local clusters of the ambiguous word).

Distributional representations of rare words, such as “mangosteen” can be less precise

than those of frequent words. However, co-occurrence of a hyponym and a hypernym in

a single sentence is not required in our approach, while it is the case for the path-based

hypernymy extraction methods.

7.3 Results

To evaluate the method three experiments were conducted. A large-scale crowdsourcing

study indicated a high plausibility of extracted semantic classes according to human

judgment. Besides, it was demonstrated that the approach helps to improve precision and

recall of a hypernymy extraction method. Finally, it was shown that semantic classes can

be used to improve domain taxonomy induction from text based on the SemEval-2016

dataset. Further experimental results and their analysis can be found in [19].
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Chapter 8

Taxonomy Enrichment using

Hyperbolic Embeddings

Materials of this chapter are based on paper [5] from the list of 14 publications the thesis

is based on.

8.1 Introduction

The task of taxonomy enrichment is as following. Given a noisy taxonomic graph G =

(V,E) where edges E represent hypernymy relations between words in V with errors of two

types (i) absent edges: Eabs = {(vi, vj) : vi is-a vj ∧ (vi, vj) /∈ E} with a special case of

orphan nodes Vorh = {vi ∈ V : ∄(vi, vj) ∈ E}; and (ii) wrong edges: Ewrg = {(vi, vj) ∈

E : vi not-is-a vj} build a cleansed taxonomic graph G′ = (V,E′) correcting the two

edge errors by: (i) adding absent edges: E = E ∪ {Eabs}; (ii) removing wrong edges:

E = E ∖Ewrg. For orphan nodes only adding edges is needed. For connected nodes either

adding absent additional edge is needed or a relocation if it is wrongly placed. The latter

is a combination of removing a wrong edge and adding an absent edge to the deattached

node in question.

In this chapter the use of Poincaré embeddings is introduced to improve existing

state-of-the-art approaches to domain-specific taxonomy induction from text as a signal

for both relocating wrong hyponym terms within a (pre-induced) taxonomy as well as for

attaching disconnected terms in a taxonomy. This method substantially improves previous
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Figure 8-1: Outline of our taxonomy refinement method.

state-of-the-art results on taxonomy extraction. We demonstrate the superiority of

Poincaré embeddings over distributional semantic representations, supporting the

hypothesis that they can better capture hierarchical lexical-semantic relationships than

embeddings in the Euclidean space.

8.2 Method

In this section, a method for taxonomy refinement using hyperbolic word embedding is

presented. Embeddings using distributional semantics (i.e. word2vec) and Poincaré

embeddings [94] are used to alleviate the largest error classes in taxonomy extraction: the

existence of orphans – disconnected nodes that have an overall connectivity degree of zero

and outliers – a child node that is assigned to a wrong parent. The rare case in which

multiple parents can be assigned to a node has been ignored in the proposed refinement

system. The first step consists of creating domain-specific Poincaré embeddings. They are

then used to identify and relocate outlier terms in the taxonomy, as well as to attach

unconnected terms to the taxonomy. In the last step, we further optimize the taxonomy

by employing the endocentric nature of hyponyms. See Figure 8-1 for a schematic

visualization of the refinement pipeline.

Training Dataset Construction

To create domain-specific Poincaré embeddings, we use noisy hypernym relationships

extracted from a combination of general and domain-specific corpora. For the general

domain, we extracted text from English Wikipedia, Gigaword [95], ukWac [96] and LCC

news corpora [97]. Noisy IS-A relations are extracted with lexical-syntactic patterns from
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all corpora by applying PattaMaika,PatternSim [98], and WebISA [99] following [100].

The extracted noisy relationships of the common and domain-specific corpora are

further processed separately and combined afterward. To limit the number of terms and

relationships, we restrict the IS-A relationships on pairs for which both entities are part of

the taxonomy’s vocabulary. Relations with a frequency of less than three are removed to

filter noise. Besides further removing every reflexive relationship, only the more frequent

pair of a symmetric relationship is kept. Hence, the set of cleaned relationships is

transformed into being antisymmetric and irreflexive.

The same procedure is applied to relationships extracted from the general-domain

corpus. They are then used to expand the set of relationships created from the

domain-specific corpora.

Hypernym-Hyponym Distance

Poincaré embeddings are trained on these cleaned IS-A relationships. For comparison,

we also trained a model on noun pairs extracted from WordNet (P-WN). Pairs were only

kept if both nouns were present in the vocabulary of the taxonomy. Finally, we trained the

word2vec embeddings, connecting compound terms in the training corpus (Wikipedia) by ’ ’

to learn representations for compound terms, i.e multiword units, for the input vocabulary.

In contrast to embeddings in the Euclidean space where the cosine similarity is

commonly applied as a similarity measure, i.e.

d(u,v) = 1− u · v
|u||v|

, (8.1)

Poincaré embeddings use a hyperbolic space, specifically the Poincaré ball model [101].

Hyperbolic embeddings are designed for modeling hierarchical relationships between words

as they explicitly capture the hierarchy between words in the embedding space and are

therefore a natural fit for inducing taxonomies. They were also successfully applied to

hierarchical relations in image classification tasks [102]. The distance between two points

u,v ∈ Bd for a d-dimensional Poincaré Ball model is defined as:

d(u,v) = arcosh
(
1 + 2

||u− v||2

(1− ||u||2)(1− ||v||2)

)
. (8.2)

This Poincaré distance enables us to capture the hierarchy and similarity between words

simultaneously. It increases exponentially with the depth of the hierarchy. So while the
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distance of a leaf node to most other nodes in the hierarchy is very high, nodes on abstract

levels, such as the root, have a comparably small distance to all nodes in the hierarchy. The

word2vec embeddings have no notion of hierarchy and hierarchical relationships cannot be

represented with vector offsets across the vocabulary [103]. When applying word2vec, we

use the observation that distributionally similar words are often co-hyponyms [104,105].

Relocation of Outlier Terms

Poincaré embeddings are used to compute and store a rank rank(x, y) between every

child and parent of the existing taxonomy, defined as the index of y in the list of sorted

Poincaré distances of all entities of the taxonomy to x. Hypernym-hyponym relationships

with a rank larger than the mean of all ranks are removed, chosen on the basis of tests on

the 2015 TExEval data [106]. Disconnected components that have children are re-connected

to the most similar parent in the taxonomy or to the taxonomy root. Previously or now

disconnected isolated nodes are subject to orphan attachment.

Since distributional similarity does not capture parent-child relations, the relationships

are not registered as parent-child but as co-hyponym relationships. Thus, we compute the

distance to the closest co-hyponym (child of the same parent) for every node. This filtering

technique is then applied to identify and relocate outliers.

Attachment of Orphan Terms

We then attach orphans (nodes unattached in the input or due to the removal of

relationships in the previous step) by computing the rank between every orphan and the

most similar node in the taxonomy. This node is an orphan’s potential parent. Only

hypernym-hyponym relationships with a rank lower or equal to the mean of all stored

ranks are added to the taxonomy. For the word2vec system, a link is added between the

parent of the most similar co-hyponym and the orphan.

Attachment of Compound Terms

In case a representation for a compound noun term does not exist, we connect it to

a term that is a substring of the compound. If no such term exists, the noun remains

disconnected. Finally, the Tarjan algorithm [107] is applied to ensure that the refined

taxonomy is asymmetric: In case a circle is detected, one of its links is removed at random.
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Word Parent
patterns

Parent after
refinement

Gold parent Closest neighbors

second language
acquisition

— linguistics linguistics applied linguistics, se-
mantics, linguistics

botany — genetics plant science,
ecology

genetics, evolutionary
ecology, animal sci-
ence

sweet potatoes — vegetables vegetables vegetables, side
dishes, fruit

wastewater water waste waste marine pollution,
waste, pollutant

water waste, natural
resources

natural
resources

aquatic environ-
ment

continental shelf,
management of
resources

international re-
lations

sociology, analy-
sis, humanities

humanities political science economics, economic
theory, geography

Table 8.1: Example words with respective parent(s) in the input taxonomy
constructed using Hearst’ patterns approach and after refinement using our
domain-specfic Poincaré embeddings, as well as the word’s closest three neighbors
(incl. orphans) in embeddings.

8.3 Results

Evaluation of the proposed method was performed on SemEval-2016 taxonomy enrichment

dataset and output of three top systems. The refinement method is generically applicable

to noisy taxonomies, yielding an improved taxonomy extraction system overall. Examples

of predictions are available in Table 8.1. Experiments show that, the developed refinement

method for improving existing taxonomies through the use of hyperbolic Poincaré

embeddings consistently yield improvements over strong baselines and in comparison to

word2vec as a representative for distributional vectors in the Euclidean space. It was

further shown that Poincaré embeddings can be efficiently created for a specific domain

from crawled text without the need for an existing database such as WordNet. This

observation confirms the theoretical capability of Poincaré embeddings to learn

hierarchical relations, which enables their future use in a wide range of semantic tasks.

Further experimental results and their analysis can be found in [5].
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Chapter 9

Node Embeddings of

Lexical-Semantic Graphs

Materials of this chapter are based on paper [3] from the list of 14 publications the thesis

is based on.

9.1 Introduction

In this chapter methods for learning embedding of graph-based metrics are introduced.

The task of graph metric learning is as following. Given a graph G = (E, V ) and a

graph metric sim : E × E → [0; 1] to learn a matrix of node embeddings E ∈ R|E|×d,

where d is the embedding dimensionality, such that sim(ei, ej) ≈ f(ei, ej), where f is some

vector-based distance, faster to compute than sim.

When operating on large graphs, such as transportation networks, social networks,

or lexical resources, the need for estimating similarities between nodes arises. For many

domain-specific applications, custom graph node similarity measures sim : V × V → R

have been defined on pairs of nodes V of a graph G = (V,E). Examples include travel

time, communities, or semantic distances for knowledge-based word sense disambiguation

onWordNet [108]. For instance, the similarity sij between the cup.n.01 andmug.n.01 synsets

in the WordNet is
1

4
according to the inverted shortest path distance as these two nodes

are connected by the undirected path cup → container ← vessel ← drinking vessel ← mug.

A large variety of such node similarity measures have been described, many of which
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are based on the notion of a random walk [109–111]. As given by the structure of the

problem, most such measures are defined as traversals of edges E of the graph, which

makes their computation prohibitively inefficient. To this end, we propose the path2vec

model, which solves this problem by decoupling development and use of graph-based

measures, and – in contrast to purely walk- based embeddings – is trainable to reflect

custom node similarity measures. We represent nodes in a graph with dense embeddings

that are good in approximating such custom, e.g. application-specific, pairwise node

similarity measures. Similarity computations in a vector space are several orders of

magnitude faster than computations directly operating on the graph.

9.2 Method

Definition of the Model

Path2vec is a graph metric embeddings model learns embeddings of the graph nodes

{vi, vj} ∈ V such that the dot products between pairs of the respective vectors (vi · vj)

are close to the user-defined similarities between the nodes sij . In addition, the model

reinforces the similarities vi · vn and vj · vm between the nodes vi and vj and all their

respective adjacent nodes {vn : ∃(vi, vn) ∈ E} and {vm : ∃(vj , vm) ∈ E} to preserve local

structure of the graph. The model preserves both global and local relations between nodes

by minimizing

L =
∑

(vi,vj)∈B

((v⊤
i vj − sij)

2 − α(v⊤
i vn + v⊤

j vm)), (9.1)

where sij = sim(vi, vj) is the value of a ‘gold’ similarity measure between a pair of nodes

vi and vj , vi and vj are the embeddings of the first and the second node, B is a training

batch, α is a regularization coefficient. The second term (vi · vn + vj · vm) in the objective

function is a regularizer that aids the model to simultaneously maximize the similarity

between adjacent nodes while learning the similarity between the two target nodes (one

adjacent node is randomly sampled for each target node).

We use negative sampling to form a training batch B adding p negative samples (sij =

0) for each real (sij > 0) training instance: each real node (synset) pair (vi, vj) with

‘gold’ similarity sij is accompanied with p ‘negative’ node pairs (vi, vk) and (vj , vl) with

zero similarities, where vk and vl are randomly sampled nodes from V . Embeddings are
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initialized randomly and trained using the Adam optimizer [112] with early stopping. Once

the model is trained, the computation of node similarities is approximated with the dot

product of the learned node vectors, making the computations efficient: ŝij = vi · vj .

Relation to Similar Models

Our model bears resemblance to the Skip-gram model [113], where the vector dot

product vi · ṽj of vectors of pairs of words (vi, vj) from a training corpus is optimized to a

high score close to 1 for observed samples, while the dot products of negative samples are

optimized towards 0. In the Skip-gram model, the target is to minimize the log likelihood

of the conditional probabilities of context words wj given current words wi:

L = −
∑

(vi,vj)∈Bp

log σ(vi · ṽj)−
∑

(vi,vj)∈Bn

log σ(−vi · ṽj), (9.2)

where Bp is the batch of positive training samples, Bn is the batch of the generated negative

samples, and σ is the sigmoid function. At this, Skip-gram uses only local information, never

creating the full co-occurrence count matrix. In our path2vec model, the target dot product

values sij are not binary, but can take arbitrary values in the [0...1] range, as given by

the custom distance metric. Further, we use only a single embedding matrix with vector

representations of the graph nodes, not needing to distinguish target and context.

Another related model is Global Vectors (GloVe) [114], which learns co-occurrence

probabilities in a given corpus. The objective function to be minimized in GloVe model is

L =
∑

(vi,vj)∈B

f(sij)(vi · ṽj − log sij + bi + bj)
2, where sij counts the co-occurrences of

words vi and vj , bi and bj are additional biases for each word, and f(sij) is a weighting

function handling rare co-occurrences. Like the Skip-gram, GloVe also uses two

embedding matrices, but it relies only on global information, pre-aggregating global word

co-occurrence counts.

Computing Training Similarities

In general case, our model requires computing pairwise node similarities sij for training

between all pairs of nodes in the input graph G. This step could be computationally

expensive, but it is done only once to make computing of similarities fast. Besides, for

some metrics, effective algorithms exist that compute all pairwise similarities at once, e.g.

[115] algorithm for computing shortest paths distances with the worst-case performance

of O(|V |2 log |V | + |V ||E|). As the input training dataset also grows quadratically in |V |,
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Figure 9-1: Similarity computation: graph vs vectors.

training time for large graphs can be slow. To address this issue, we found it useful to prune

the input training set so that each node vi ∈ V has only k ∈ [50; 200] most similar nodes.

Such pruning does not lead to loss of effectiveness.

9.3 Results

Experiments were conducted to measure computational efficiency of the algorithm, as well

as quality of approximation intrinsically (based on SimLex999 dataset) and extrinsically

based on three SemEval WSD datasets. A comparison to baseline approaches, such as

Deepwalk, node2vec or TransR were conducted. It was demonstrated that the approach

generalizes well across graphs (WordNet, Freebase, and DBpedia). Besides, the method

was integrated into a graph-based WSD algorithm, showing that its vectorized counterpart

yields comparable F1 scores for the WSD task.

Path2vec enables a speed-up of up to four orders of magnitude for the computation of

graph distances as compared to ‘direct’ graph measures (see Figure 9-1). Thus, the model

is simple and general, hence it may be applied to any graph together with a node distance

measure to speed up algorithms that employ graph distances.

Structured knowledge contained in language networks is useful for NLP applications

but is difficult to use directly in neural architectures. In this chapter, a way to train

embeddings that directly represent a graph-based similarity measure structure was

proposed. The model, path2vec, relies on both global and local information from the graph

and is simple, effective, and computationally efficient.

Further experimental results and their analysis can be found in [3].
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Chapter 10

Lexical Substitution and Analysis

of its Semantic Relation Types

Materials of this chapter are based on paper [2] from the list of 14 publications the thesis

is based on.

10.1 Introduction

In this chapter methods for lexical substitution and its analysis are presented.

Lexical substitution is the task of generating words that can replace a given word in a

given textual context. For instance, in the sentence “My daughter purchased a new car” the

word car can be substituted by its synonym automobile, but also with co-hyponym bike, or

even hypernym motor vehicle while keeping the original sentence grammatical.

More formally, the task of lexical substitution is formulated as following. Given a

sentence S composed of a context C and a target word T find lexical substitutes:

words/phrases which can be used to replace T without changing meaning of S as shown

below:

• “We were not able to travel in the weather, and there was no phone.” → telephone;

• “What happened to the big, new garbage can at Church and Chambers Streets?” →

bin, disposal, container.

Generation of plausible words that can replace a particular target word in a given context
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is a powerful technology that can be used as a backbone of various NLP applications, such

as word sense induction [116], lexical relation extraction [117], paraphrase generation, text

simplification, textual data augmentation, etc. Note that the preferable type (e.g., synonym,

hypernym, co-hyponym, etc.) of generated substitutes depends on the task at hand.

In this section, presented a study of lexical substitution methods employing both

classic and more recent language and masked language models (LMs and MLMs), such as

context2vec, ELMo, BERT, RoBERTa, XLNet. It is shown that already competitive

results achieved by SOTA LMs/MLMs can be further substantially improved if

information about the target word is injected properly. Besides, an analysis of lexical

semantic relation types generated by these models is performed, as illustrated in

Figure 10-1.
Synonym Co Hyponym Co Hyponym 3 Target

Transitive 
Hypernym

Transitive 
Hyponym

Direct 
Hypernym

Direct 
Hyponym

Unknown Word
Unknown 
Relation

GOLD telephone (5)
OOC phone telephone phones cellphone fone videophone handset telephones p990i cell-phone
XLNet electricity internet phone power telephone car water communication radio tv
XLNet+embs phone telephone phones cellphone internet radio electricity iphone car computer

GOLD bin (4) disposal (1) container (1)
OOC can could should would will must might to may ll
XLNet can dump bin truck disposal pit heap pile container stand
XLNet+embs can could will bin cannot dump may truck disposal stand

We were not able to travel in the weather , and there was no phone .

What happened to the big , new garbage can at Church and Chambers Streets ?

Types of semantic relations: synonym co-hyponym co-hyponym 3 target direct hypernym transitive
hypernym

direct hyponym transitive hyponym unknown-relation unknown-word

Figure 10-1: Examples of top substitutes provided by annotators (GOLD), the
baseline (OOC), and two presented models (XLNet and XLNet+embs). The target
word in each sentence is in bold, true positives are in bold also. The weights of
gold substitutes are given in brackets. Each substitute is colored according to its
lexical-semantic relation to the target word.

10.2 Method

To generate substitutes, we introduce several substitute probability estimators, which are

models taking a text fragment and a target word position in it as input and producing a

list of substitutes with their probabilities. To build our substitute probability estimators

we employ the following LMs/MLMs: context2vec [118], ELMo [119], BERT [120],

RoBERTa [121] and XLNet [122]. These models were selected to represent the progress in

unsupervised pre-training with language modeling and similar tasks.
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Given a target word occurrence, the basic approach for models like context2vec and

ELMo is to encode its context and predict the probability distribution over possible center

words in this particular context. This way, the model does not see the target word. For

MLMs, the same result can be achieved by masking the target word. This basic approach

employs the core ability of LMs/MLMs of predicting words that fit a particular context.

However, these words are often not related to the target. The information about the target

word can improve generated substitutes, but what is the best method of injecting this

information is an open question.

Proposed is a method to introduce information about the original target word into neural

lexical substitution models. Suppose we have an example LTR, where T is the target word,

and C = (L,R) is its context (left and right, correspondingly). For instance, the occurrence

of the target word fly in the sentence “Let me fly away!” will be represented as T =“fly”,

L =“Let me”, R =“away!”.

The proposed method combines a distribution provided by a context-based substitute

probability estimator P (s|C) with a distribution based on the proximity of possible

substitutes to the target P (s|T ). The proximity is computed as the inner product between

the respective embeddings, and the softmax function is applied to get a probability

distribution. However, if we simply multiply these distributions, the second will have

almost no effect because the first is very peaky. To align the orders of distributions, we

use temperature softmax with carefully selected temperature hyperparameter:

P (s|T ) ∝ exp(
⟨embs, embT ⟩

T
). (10.1)

Target word injection methods rely on word embeddings similarity and is denoted as

“+embs”. The final distribution is obtained by the formula

P (s|C, T ) ∝ P (s|C)P (s|T )
P (s)β

. (10.2)

For β = 1, this formula can be derived by applying the Bayes rule and assuming con-

ditional independence of C and T given s. Other values of β can be used to penalize fre-

quent words, more or less. The current methods are limited to generating only substitutes

from the vocabulary of the underlying LM/MLM. Thus, we take word or subword embed-

dings of the same model we apply the injection to.
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Word probabilities P (s) are retrieved from word frequencies for all models except ELMo.

Following [123], for ELMo, we calculate word probabilities from word ranks in the ELMo

vocabulary (which is ordered by word frequencies) based on Zipf-Mandelbrot distribution.

In addition to this method simpler injection strategies were tested e.g. dynamic

patterns, duplicate input or original input. These showed weaker results. Different

LMs/MLMs are employed to obtain context-based substitute probability distribution

P (s|C). For each of them, we experiment with different target injection methods:

context2vec, ELMo, BERT/RoBERTa, XLNet.
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Figure 10-2: Proportions of substitutes related to the target by various semantic
relations according to WordNet. We took top 10 substitutes from each model and all
substitutes from the gold standard.

10.3 Results

Several existing and new target word injection methods are compared for each LM/MLM

using both intrinsic evaluation on lexical substitution datasets (SemEval-2007 and

CoInCo) and extrinsic evaluation on word sense induction (WSI) datasets (SemEval-2010

and SemEval-2013). Experimental results on two WSI datasets show that the proposed

lexical substitution method with injection of information about target word (+embs)
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consistently outperforms baseline methods, such as C2V, ELMo, BERT, RoBERTa,

XLNet, without such information and ranks favourably to the previous SOTA results.

Besides, this work presented an analysis of the types of semantic relations, such as

synonymy, hypernymy, and co-hyponymy, between target words and their substitutes

generated by different models as illustrated in Figure 10-2. Results suggest that,

co-hyponyms dominate among substitues for nouns while synonyms dominate for verbs

with co-hyponyms representing second largest type.

Further experimental results and their analysis can be found in [2].

74



Chapter 11

Conclusion

The results of this thesis are based on work presented in a series of research papers and

journal articles at various international venues on methods and algorithms of computational

lexical semantics with application to extraction of word senses, hypernymy relations between

words, and semantic frames [1–42]. More specifically points defended in this dissertation

are based on 14 publications [1–10,17–20].

The set of results touched in the mentioned publications provide a comprehensive

computational framework for processing of meaning of words and phrases and relations

between them (the core topic of lexical semantics). Two types of computer-readable

representations of lexical units (e.g., words and phrases) and semantic relations between

them are currently established: (i) resources constructed manually, such as WordNet,

BabelNet, or FrameNet and, (ii) automatically induced lexical semantic representation

from raw text, such as sparse or dense word embeddings, and relations extracted with

rules or statistical taggers. These two representations of lexical units and relations

between them were traditionally separated. Some NLP methods would rely solely on

precise yet limited in recall manually constructed lexical resources, while others would

only on distributional methods which are more prone to inconsistencies of semantic

representation yet provide higher recall as they are obtained from huge unlabelled text

corpora. In this dissertation we made several methodological contributions related to both

representations and their combination.

All in all, contributions presented in this thesis can be grouped as following:

• Graph clustering algorithm for linguistic networks: A fuzzy meta algorithm
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for graph clustering for the needs of large linguistic graph processing. The algorithm

was applied to extract synsets, semantic frames, and semantic classes.

• Word sense embeddings: Methods for learning sense embeddings using graph

clustering and a mechanism for disambiguation of words with respect to these

representations.

• Inducing interpretable word sense representations: Methods for inducing

word sense representations and making them interpretable by automatic retrieval of

hypernyms, images, and definitions.

• Alignment of word sense representations: Technology for alignment of

manually created and automatically induced word senses. This set of methods

allows enrichment of precise low coverage manual representations with high coverage

word senses induced from text.

• Disambiguation of word senses in context: Methods for disambiguation of word

meaning in context were proposed in form of classic WSD (word sense disambiguation)

setup where given a word-context pair a sense identifier has to be predicted, and in the

form of LexSub (lexical substitution setup) where given word-context pair a synonym

fit to meaning of the context has to be predicted.

• Induction of semantic trees: Methods for dealing with special kind of lexical

semantic resources composed of hierarchical relations, namely taxonomies, were

proposed. Methods for population of existing, e.g. manually constructed, semantic

trees with new nodes, e.g. new words and phrases not covered by vocabulary of such

taxonomy. Besides, an approach based on clustering of graphs of automatically

induced word senses was devised to perform cleansing of automatically extracted

hypernymy relations.

• Vectorisation of lexical semantic networks: Methods for node embeddings based

on graph-based measures. Application for completion of missing edges of lexical

databases and knowledge graphs, and for word sense disambiguation.

Therefore, the methodological contributions cover both aspects of automatic

construction of distributional and symbolic representations of word senses. Besides,
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methods for linking these representation and disambiguation in context are presented.

The methodology is heavily based on graph-based methods, notably graph clustering,

showing that its a versatile tool in various task of computational lexical semantics. Most

developed methods rely on graph representations as lexical semantic resources are

naturally represented as graphs (with nodes being word senses and semantic relations

being edges). At the same time, vector representations are also used demonstrating the

usefulness of duality of graph-vector representation metaphor for various tasks of

computational lexical semantics.

The “eco-system” of the developed methods and techniques illustrated in Figure 1-2,

from one hand can be used to automate work manual labour of lexicographers creating

and keeping up-to date various lexical-semantic resources. On the other hand, the

developed methods can be used for improve readability of the neural models though

linking vector-based representations inherently used by these models to interpretable

graph-based representations. Besides, such linking of graph-based structures can improve

performance in applications yielding additional representations.

A promising direction of the future work is to investigate more large language models

(LLMs), such as T5, GPT, or LLaMa for the task of generation and completion of lexical

semantic resources and other tasks related to modelling meaning of words senses and rela-

tions between them. Some results of work in this direction were already published by the

author in [124–126], which suggest that using LLMs to solve tasks discussed in this thesis

is a promising direction for future research and developments.
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